## THE STAR;

BEING A COMPLETE SYSTEM OF

## THEORETICAL AND PRACTICA.L. ASTROLOGY.

## CONTAINING:

RULES AND ASTRONOMITCAL•DJAGRAMS,
POR
finding the right ascensions, ascensional dipferences, DECLINATIONS, \&C. OF TIIE PLANETS AND PIKED STAKS.

THE WHOLE ART OF DIRECTIONS,
according to principles strictly matifematical, with ay
Easy method of rectifying nativities.

## RULES

to erect a tmear of tue heatens for any latitl de, bl TRIGONOMETRY AND TIIE CELESTIAL GLOBE.

## 

Hhereny every important event in life may he DISCOVERED FROM THE CRADLE TO THE TOM月.

The whole illustrated by
THE NATIUITY OF THE AUTHOR,
WITH SEVERAL OTHER REMARKABLE GEXITCRES, WITH MANY IUUNDRENS OF DIRECTIONS CALCULATED IN FCLLL.

## BY EBN SHEMAYA.

LONDON:
PUBLISHED FOR THE AUTHOR,
BY S. CORNISH \& CO. 126, NEWGATE STREET.
1839.

## CONTENTS.

Page
Preface ..... vii
Introduction
Definition of Astronomical Terms, \&c. ..... 15
Instructions and Illustrations preparatory to the Conputation of Primary Directions ..... 18
To find the Sun's Declination, Longitude, and Right Ascension ..... 21
To find the Right Ascension and Declination of a Star, with Latitude ..... 93
Note.-The Sun as well as the stars has a sinall latitude,but too sinall to be important in astrolugical problems.
To find the $A$ scensional Difference, the Semidiurnal and Semi- nocturnal Arc, and the Obliquc Ascension and Descension of the Sun or a Star ..... 27
To find the Polc of Pusition of the Sum or a Star ..... 29
To find the Pole of Position of any Celestial House ..... 30
Demonstration that thesc Polcs arc variable ..... 33
To find what Point of the Ecliptic occupies the Cusp of any Celestial Housc ..... 35
To Erect an Horoscope by the Globes ..... 40
To Direct any Significator in the Zodiac without Latitude ..... 41
Ditto, with Latitude ..... 42
Of Mundane Primary Dircetions ..... 44
First, To the Angles of the Firoure ..... 44
Sccond, Formed by the Stars with each other ..... 51
Of Mundane Parallels ..... 54
To calculate Rapt Parallels ..... 56
To Rectify the Nativity of an Infant ..... 60
To Rectify by Personal Accidents ..... 61
Rulcs and Instructions to Calculate a Nativity ..... 61
Excmplary Nativity, with cvery Direction (150) calculated in full, with copious explanations ..... 63
Brape
Nativity of the Author, with Calculations of 1330 Directions and more brief explanations ..... $13:$
To Direct any Significator, with and without Latimale, ly the Cele-tial Cilohe ..... 107
Rules for Describing the Personal Appearnnce ..... 16ii
Rules for the Mind and Disposition ..... 116
Rules for Life, Ilealth, and Fortme in Life ..... 167
Rulea for Julsring the Particular Qualities of the Mind ..... 16a
Un the Etfect- of Dinetions, and tirst to find the IIyler or (iiver of Life ..... 1(i)
Eiliect: of the Conjunction ..... 170
liffects of the Se vile and Trine ..... 174
Enfects of the Squere aud (typosition ..... 175
Remark = oustcontary linections ..... 178
Remarks on the dature and Intlimenco of Itarseltell ..... 179
 ..... $17: 1$
(In the Veanher of Time in Aren of Dircetion ..... 180
Tahle of the Mra-no of Time ..... 141
(ophetas Wharintion an the Nativity of the Iuthor ..... 18:3
Ther Aativity of Rephrital ..... 1111
The Vativity of Nra* * * * ..... 114
Ther Votavity of Viva $l^{2}$ • * ..... $1: 17$
The a ativitics of Thrue ('hilifren ..... $16!)$
('uncluntun .

## PREFACE.

In the present flourishing, though, it may be added, infant state of Astrology, it will not be a matter of astonishment that a new treatise should be ushered into the world, professing to elucidate the objects of this important seience.

The object of the present treatise is to open to the eye of the young student every iutricate part of Genethliacal Astrology. It is true that many works have already apneared professing to do this, but the generality of them are replete with the most extraragant and ridiculous absurdities; and, it may be safely added, that no eomplete work on this seience, founded exelusively ou the principles of mathematies aud natural philosophy, has yet been presented to the public.

The plan I have adopted I flatter myself will meet with the approbation of every candid reader. Originality, moral purity, aud beauty of design, have beeu my principal aims; but in these it is not for me to shew how well I have succeeded. The astrouomical diagrams, and the rules for erecting a eclestial seheme and working zodiacal directions by the globes, are rarities in a work of this nature; no obsolete tables are used iu the ealculatious, and some kuowledge of the use of logarithms will suffice alone to cnable the curious to judge for himself on a scieuce which, if not generally cousidered philosophical and worthy of study, is at least oue of the most iuteresting, mysterious, and antique in existence.

I might, in aecordauce with the presailing eustoms observed in prefaces, enumerate the contents and dwell upon the beauties of my work; but these will be suffeiently obrious to the reader; suffiee it to say, that origiuality is its prineipnl feature as well in the elementary instructions as the nativities contained in the latter part of the book. These nativities, it is presumed, contain proofs of the truth of astrology sufficiently luminous to defy the united efforts of the seeptic and the critie, to shew the futibty of its prineiples.

This work was ready for the press in A.D. 1831, but circumstanees, which it would be useless to explain, have delayed its publication. If the treatise had been then published, it would have nppeared muler the auspices of Raphacl, the late celebrated author of "'She Prophetie Messenger," the "Astrologer of the Nineteenth Century," and many other popular uorks on Astrology. Raphael is now no more, (Requiescat in pace) but it is with pleasure I refer the reader to a notice of" The Star in the "Familiar Astrologer," one of the last of his publications.

## INTRODUCTION.

As a believer in and supporter of Astrological Science, I shall naturally be expeeted to adduce some reasons for my belief, especially in an age when popular opinion is with many taken as the standard of truth. "Vox populi vox Dei" is an adage which may, in many instances, be controverted, and in none more powerfully so than in its applieation to the present topie. The profound reasons for a disbelief in the Astral seience, an ingenious writer observes, are sueh as these:-"Astrology is false beeause it cannot be true-because every body disbelieres it-because it is seldom heard of-no one studies it now-for no person of sense thinks it worth his attention-arid, in short, because of a thousand more reasons containing no reason at all, where the place of argument is filled by an ipse dixit, and that of proof by mere assertion." Thus the impossibility of a subject is stated whielı we prove by many hundreds of examples to be not only possible but demonstrably true; many also beliere in its most abstruse parts even now, and aneiently it was unirersally believed and studied. No plinlosopher was deemed a complete scholar unless he had some knowledge of the occult sciences. It is too true it is seldom heard of now-a-days, but this is merely the effect of ignorance and folly; foolish or conecited men never give it a thought, because they are unable to comprehend its sublimity, and the beautiful harmony of those prineiples which prove it to stand on a basis firm as that of nature, and which " the wreek of matter and the crush of worlds" alone will be able to destroy.

But to shew that men of unclerstanding have thought it deserving their attention, if not the chief business of
their lires, we nead surely ouly recall to its assailants the names of Ptolemy, Placidus, Kcpler, and Flamstead-men, who from indefatigable exertions lave discoseral the mosi hidden and mysterious of Nature's laws, and who are as much raised above the generality of the learned, as the stars of hearen above the pale attendant of earth's nighty homrs. Astrology is the scicnce they most delighted in; for as Raphacl ohserves justly-
"Whercver we scarch, cither among sacred or profane historians, mumerous instances are to be fonnd whieh set forth the astonishing presages of this formerly resplendent science, which even in the ruins that time and the revolntoons of public opinion have brought upon it, is grand and magniticent-and like the stary host, from which its primenples are derived, contimes wherever its stupendous footsteps are taced, to soar above all other arts even by the lofty and dignitied mature of its pretensions; but when the:e pretensions are bached be truth, and demonstrated by the light of philosophie researeh, it may be asserted whthont fear of contradition, that there exists not a scomee more truly sublime, or more premerally interestime, than the celestial seicuce of the stars."

The contemplation of these high and noble subjects derates the mind to a nearer partieipation of the divine nature than ame other, and fills the sonl with such rapthrous feelinge as none but those who have experienced them enn possihly conceive. Young, in his Night Thonghts, has thas beantifully employed his poctical talents on the thought of llugens, that there might be stats at such immone distances, that their may of light had not ret reached our world.

[^0]I need not add, that contemplations of nature, as well in her most hidden seerets, as in her every day phenomena, lead most evidently to a knowledge of the divine attributes; thus raising the intellectual powers of man from earth to heaven. For while we reflect on the mysterious operation of second eauses, as well as on the boundless extent of space, and the rast number of worlds which evidently pursue with speed inconeeivable their mighty revolutions through its azure fields, nothing ean be more natural than the profound reflections of the mind displayed in the sublime language of the author just quoted.
> " With what an awful world revolving power Were first the unwieldy planets launched along The illimitable void, there to remain Amid the flux of many thousand years, That oft have swept the toiling raee of men And all their laboured monuments away, Firm, unremitting, matchless, in their course, To the kind tempered change of night and day, And of the seasons ever stealing round Minutely faitbful; sueh the all perfeet hand That poised, impels, and elearly rules the whole."

The objects of the present work will be to illustrate the Astral art, whieh certainly is the most sublime of natural seiences-the noblest study that ever engrossed the attention of mortals; to remore prejudiee, and to endearour by authentic examples to prove beyond the possibility of refirtation, the truth of Genethliaeal Astrology ; and to transeribe its true prineiples from the glorious arehives of the stellar worlds, where it has existed ever sinee the foundations of nature were formed; and will eontinue to exist until its firm pillars are east down, and another universe is seen to arise in all its eternal beauty. Then will the intelleetual eye behold wisdom unelouded break forth in primeval sublimity.

The ancient days are past, many of the records of antiquity are destroyed, and the eonsequence is, that Genethliaeal Astrology is in its sceond state of infaney. Errors and absurdities have erept upon it, like moss around the ruins of an ancient edifiec, until scarecly anything of its former grandeur is discernible : but the labours of our present Astrologers, and more particularly those of the
lately deceased Raphacl, have in some measure rednced it once more to a demonstrable system, in which science again appears in its uative simplicity. I shall now take a slight historieal view of the subjeet, aud then proeed to the neeessary illustrations of it.

Josephims, the Jewish historian, in the second elapter of his first book of Antiquities, says, that " The elindren of Seth were the iusentors of that peeuliar sort of hearenly wisdom connected with the heavenly bodies and their oreler, and that their inventions might not be lost before they were sufliciently known-upon Ahlam's prediction that the world was to be destroyed at one time by the force of fire and at another time by the violenee and guantity of waterthey made two pillars, the one of briek the other of stone. They inseribed their discoseries on them both, that in case the pillar of brich should be destroyed by the flood, the pillar of stone might remain, and exhibit those diecoveries to mankint, and abo inform them that there was another pillar of briek crected by them . now this remains in the land of Syriad to this day." Succecting writers are of opmion that these pillars were ereeted by Seth, King of Leypt, whodied in the year lizl lefore Christ; neverthe-le- , each of these opinions proves the great antiquity of the scieneer. Those writers confess with dosephes that the aloove predictions were traditionally helieved by all untiquity. Josephusalso re marks that God afforded them (the antedilutians) a longer tome of life on aceount of the grod use ther mate of it in smeh discorerics. 'This is contirned by Berosus, Machus, Hestiecos, and Hallamiens, wholived Sill year: before Christ, and other historians. In lis fifth chapter of the same hook, Josephus quotes Berosus thas, " In the tenth generation after the flood there was, among the Chaldeans, Abraham, a man righteous and great and skilful in the eelestial seience." Numerous passages might be quoted from Josephlms to prove the antiquity of astrology, but these are suffieient.

It. is ecrain that at a tery early period the Egyptians must have had an extensive knowledge of this art in eommon with others; many think it probable that the famous Hemoes, from whom Hermetic Philosophy dates its existence, was no other than the Moses of holy writ.

The ancient prevalence of Sabeanism, or Star-worship, is universally acknowledged, morc particularly among the Indians and Egyptians; and history furnishes abundance of testimony that in the days of Moses and Joshua, adoration was paid to the heavenly host in the Canaanitish lands, and at a later pcriod among the Greeks and Romans: but it is certain that astrology is much more ancient. A knowledge of the hearenly bodies was neccssary to be acquired immediately after the fall of man, in order to conduct some of the most important occupations of lifc; and the wonder and delight excitcd by the glorious appearance of a firmament of stars, and their regular and stupendous motions, would naturally inspire the inind with a love of this study. The long lives of the primeval inhabitants of the world, with their rural manners, Sc. were cxtremely favourable for a profitable pursuit of astral knowledge: and it is bcyond a doubt that this was acquircd. Expericnce would teach them that thic sun and moon acted, as secondary causcs in mundane affairs; the coming of spring was occasioned by the sun returning into the northern hemisphere; and the heat of summer, when he began to be vertical, and burn up the parched regctation. When he declined to the south, then winter, with its hoary locks, returned, and animal life was rendered uncomfortable from excess of cold. They obscried the moon pass through the signs of heaven with clanging form, and at certain periods draw the waters of the occan, which rose to accompany her beams. And there is no reason to deny their knowledge of a lunar influcnce on the minds of insanc beings, who have from very remote ages been termed lunatics. They knew her power over sublunary things in many instances, and thus their knowlcdge was established. Watching orer their flocks in the ficlds by night, the ancient shephords obscrved that the weather was affected by the various configurations of the moon with certain stars and planetary orbs, cxpericnce taught them the affections of cvery planct, and these considcrations, combined with a natural desirc to dive into the secrets of futurity (which is native almost to every bosom), were the first foundations of a science afterwards so glorious. Their knowledge was depieted in lncroglyphical symbols, and so delivered to posterity ; afterwards a now era commenced-the nations lapsed into
idolatry-the living God was forgotten, ignorance overclouded the minds of men, and the eelestinl orbs were worshipped as the primary dispensers of good and evil. The hnown influence of the benevolent planets eansed them to be adored as benignant beings, and to the stars which erer and anon showered down their mpropitious rays, sacrifiees were offered to allay their malignant wrath.

Even the light and darkness eaused by the approach and disappearnnee of the solar orb were ndored as deities of an opposite nature, as good and evil demons. Thus was the noblest of seiences perverted and mixed with the grossest absurdities in those dark ages, till wisdom again began to wave her bamer over a newly enlightened world, and science sprung in celestial beanty fiom her lips. In later days the greatest philesophers have been its warmest adrocatés.

Sir Isare Newton in his chronology remarks, that Astrology was invented only 752 years before Christ; but as we hase just shewn history proves the ineorrectuess of this statement. Josephus, the ancient Jewish historian, died A. D. 93, but he was too well nequainted with the history and traditious of his own nation for any subsequent writer to disparage his anthority. Abralnm flourished about 2000 years before Christ, and how long before his days antrology was cultirnted as a seience is maknown. Further it in recorded, in the ath chapter of Judges, verse 20 , that " They fought from hearen, the stars in their courses fompht against sisem." The matural and obvious meaning of which is, that the stars in their revolutions formed the malevolent train of mortal configurations, which caused the life of Sisern to fall a prey bencath their mighty power. The denth of Sisern, it is eertain, ocenrred nearly 1300 years before Christ, so that the saered language of Dehorah proves the science of the stars to have been understood among the Jews even at that remote period, affording an illnstration of the fact, that they received the knowledge of it from Abraham, the father of their race, as asserted by Josephims; thus proving astrology to have flomrished before the denth of Noan, for this was the age in which Abralam lived. We might address the disbelievers in eclestial eauses in the langunge of Job, (who is supposed to have lived 2000 years before the birth of Christ), "Canst
thou bind the sweet influences of Pleiades, or loose the bands of Orion? Canst thou bring forth Mazaroth in his season? or canst thou guide Arcturus with his sons? Knowest thou the ordinances of heaven." Until then thou shalt remain ignorant of the truth. And farther, to use the language of Danicl to Nebuchadnezzar, till " thou shalt have known that the heavens do rule;" for "the heavens declare the glory of God, and the firmament sheweth forth his handy work." The Psalmist also cries with holy zeal, "Teach me the measure of my days, how long I have to live, that I may know how frail I am." "Instruct me so to number them, that I may apply my heart unto wisdom." Homer, the first Greek poet, who lived about 900 years before the Christian era, mentions several constellations, and further refers to other departments of astrology, which proves him to have possessed some knowledge of it. We have also certain proofs in holy writ that astrology was an art cultivated in Babylon prior to the prophet Isaiah, who prophesied about 760 years before Christ, affording an additional testimony of its antiquity.
These quotations and authorities, notwithstanding the contemptible prejudices of modern writers, will, I am convinced, prove the great antiquity of the astral science, and its moral tendency will, on proper investigation, be soon acknowledged. What, for instance, can afford more sublime ideas of the Creator than his own works? Can the philosopher pore over the hearens and consider the motions of the stupendous planctary worlds as they revolve in regular periods in their vast orbits-can he observe their powerful influence in created beings, and particularly over the life and death of man, the master-piece of the creation, knowing them to be mere inanimate bodies, acting only as receptacles of secondary influence, and fail to obscre the almighty hand of the Supreme Author of nature guiding the whole machinery of the universe in its true and wonderful order? Impossible; and we are constrained to exclainı with the poct, "An underout astronomer is mad." He views at once the omnipotence of Jehorah, the greatness of his wisdom, the boundless extent of his glory, and the infinity of all his attributes; he exclaims with rapture, " When I consider the heavens the work of thy fingers, the moon and the stars which thou hast ordained; Lord, what is
man that thou art minulful of him, or the son of man that thou regardest him!'"

I shall now proceed to explain the theory of planetary influenee. All reasonable men almit the superintendance of Dirine Proridence! of a Being who sits enthroned in the highest heavens, and looks down in the majesty of his power on all the works of his creation. Miracles are now entirely out of the question, and all the effects in nature are produeed be natural eauses. Even at the creation of the unirerge this was the case; for as soon as the various worlds wore brought into existence, the Spirit of God impressed a violent motion on the surface of each chaotic mass, and the waters were separated from the dry land. Jehovah did not separate the tand and the waters by an immediate ciliort of his power, but he eaused the riolent motion which he impressed upon them to perform that purpose. Ile established the laws of the universe, and gave to each celestinl orb its own appropriate motion, ly which it contimes to perform its ammal rerolution, without the least inerease or diminution whatever. The regular suecession of seavons was also orlaned; the earth moved around the sun with its axis inclined to the plane of its own orhit, and thus the solar orb was made to shine on every part of its surface. That sun " ${ }^{\text {w }}$ as of such a mature as to attract the waters; they arose in rapours, and desecnded again to the earth in dew and rain, and thus were the purposes of regetation promoted. The earth produced its inerease, and all things were rendered harmonionsly conducive to the universal good. Wilson, author of the Astrologieal Dietionary observes, "Gencthlineal Astrology is founded upon the incontrovertible truth that every animal is an integral part of the mass or globe to whieh it belongs and adheres, and consequently it is subject to the laws by which such mass is governed; and as the luminaries hare a manifest effect upon our globe, varying according to their respective positions, every component part of the globe must be equally subject to their operations, which differ in different substances, as such substances are modified or organized. ljut although the effects of the luminaries are the only ones evident to our senses, it would be rery unreasonable to suppose them to be the only bodies to whose influences we are suhject. As a mountain changes the
direction of a plumb-line, so must every planet, however remote or minute, opcrate upon every material substance in proportion to its magnitude or proximity.
"Bodies seem more susceptible of planetary influence from their fluidity, hence the water is more powerfully affected than the land, and doubtless an embryo is more susceptiblc of planetary impression than the fretus, when it is completely formed, and becomes more solid; nevertheless, the moment of birth must be an important period, for then the animal is disengaged from the matcrial medium, through which it had hitherto received every impression, and plunged into an atmosphere whose qualities are different, bccause unmixcd and unmodified by any intermediate substance, and in this statc it is absorbed and inhaled by the animal, and is productive of new impressions and effects according to the qualities it contains. Should this event take place at the change, or full of the moon, when the luminarics act in concert upon the water, they operate upon the fluids of such animal in an equal ratio, and contract or distend the vessels which contain them. If the moon be in her dichotomes, her power will differ as much in the animal as in the globe, of which it is a part, if at the fourth day before the change, (a period at which she most powerfully affects the atmosphere), or at the third day after, or at the first quadratc lunation, or if the sun be angular, or in any other condition of the atmosphere, no matter from what cause produced, the animal must evidently reccive corresponding impressions, according to the nature and peculiar qualities of the fluid by which it is surrounded and impregnated. Hence arises the infinity of forms, intellects, and propertics in all animals, whether rational or irrational, varying with the circumstances under which they were produced, and again varying according to the naturc of the substances of which they are composcd, which were in their time the result of other mixtures, arising from other celestial positions: hence the offspring of different parents, although boin at the same instant, differ essentially from icach other, because they are formed from diffcrent substances, and have had impressions communicated to them through different mediums: hence children of the same parents differ, when born at different pcriods, becausc, although their substances
are the same, there is no resemblance in their horoscopes, nud hence twins resemble enel other because they have the same origin and the same ambient."

Many, who for obvions reasons, ndmit the influence of the smin and moon on terrestrial bodies, question (thought very groundlessly) that of the other plamets. The influence of all seems to be principally enased by the power of attraction, and I imagine there cannot be a more indulitable proof of the great attractive force of one planet upon mother, than that fommed on the theory of Dr. Halley, and others antecedent to the discovery of that nmed from its diseoterer, Merselell.

The philosophe rs obsered no irreenharity in the motion of Satorn, which they fomd imposible to explain by the known laws of natire. dt length they endemoned to do this be supposinge, that another planct existed beyond the orbit of saturn, acting contimally mon him bs an attractue forer, so as to impede or necelerate lis orbicular. motion, acording to their relative sitnations: nud, from the midnght lahours of Dr. Herselhell, the planet now hearing bi- name wha discosered, prosing, leevod dispute, the truth of the former cenclnsions, and at the same time powerfully allustrating the mighty Inws of attraction. Now, as it is prosed that such $n$ small planct as llerschell comparatively r, has such very pomerfil inthence on Satum, has to imperl or accelerate his motion, notwithstanding the vast diflernence in the extent of their orbits; why cmonot Satnrn and Jupiter, which contain many tinues the quantity of miaser that the arth contains, whose diameters are many thens greater than that of the enrth, and which are much nemer to the enrth than Herschell is to Satnrn, 1 say, whe comot the e inmense orbs affect the earth, and con-- cucutly every being existing upon it in a very considernble decrece? Thas csery objection to planctary influence, in all its molifications, is completely obriated.

Agnim, all astrological calenhations are purciy mathematical, and may therefore be mathematically demonstrated: and the inferences dawn from them are based on experience. Astrologers philasophize as Lord Bacon philosoplized, they make fact, and the universality of the fact the eromud of all their predietions; ecrtain resints linve been fonnd to be prodnced by eertain ennses by the ancient
inventors of the science, and transmitted from them to posterity, upon which, as I just obserred, we found our theory; for instanee, during the lapse of several thousand years, it has always been observed that in the geniture of a male, a trine aspeet of Venus and the moon, (mathematically calculated and equated by a certain measure of time), has invariably been found to be productive of marriage or courtship. This then we affirm as a universal fact, determined by the experience of ages, that the trine of the moon and Venus causes matrimonial engagements. Thus it is with every prineiple of Genethliacal Astrology, founded on the immutable laws of nature : it is itself immutable, and being eonfirmed by many thousands of facts, it is therefore ineontrosertible. "No two seiences ean differ more in essenee and principle than Genethliaeal and Horary Astrology, the former being founded on the known and obrious laws of nature, whereas the latter is merely a doctrine of sympathies, equally true with the former, but owing to prejudice and want of observation not so elearly pereeptible."

As a most luminous proof of the truth of astrology, I shall relate a well authenticated aneedote of Drvden, the celebrated English poct.

In the Eneyclopadia Britanniea, under the artiele "Dryden," are the following passages:-
"Congreve, whose anthority eaunot be suspeeted, has given us such an account of him as makes him appear no less amiable in his private character as a man, than he was illustrious in his public one as a poet," Se. Se.
"Dryden married the lady Elizabeth Howard, sister to the Earl of Berkshire, who surrived him eight years, though for the last four of them she was a lunctic, having been deprived of her senses by a nerrous fever. By this lady he had three sons: Clarles, John, and Henry. Of the eldest of these there is a cireumstance related by Charles Wilson, Esq. in his life of Congreve, whiel seems so well attested, and is itself of so very extraordinary a nature, that we eamot avoid giring it a place here. Dryden, with all his understanding, was weak enough to be fond of judicial astrology, and used to calculate the nativities of his children." (And the editors of the Encyelopredia might have added: the result of his calculations
fully justified this extraorlinary wenkness ! and did the greatest credit not only to Dryden as an astrologer, but to astrology as a science). "When his lady was in labour with his son Charles, he, being told it was decent to withdraw laid his watch on the table, begeging oue of the ladies then prescut, in a most solemm mamer, to take ceact notice of the very minute that the child was born, which she did, and acquainted him with it. About a weck after, when his lady was pretty well recovered, Mr. Dryden took occasion to tell her that he had been calculating the child's nativity, and observed, with gricf, that he was born in an eril hour, for Jupiter, Vems, and the sme were all under the earth, and the lode of his ascendant aflieted with a hateful square of Mare and Saturn. If he lives to arrive at the sth year, says he, he will go near to dhe a violent death on lis very birth-day, but if he shonld escape, as 1 see but small hopes, he will in the 23rd year be mader the very same coil direction : and if he shonkd ecompe that also, the a3rd or 34th year is, 1 fear-_ Here he was intertupted by the immoderate grief of his lady, who conk no loneer hear calanity prophesied to betall her son. The time at last came, and lugust was the inanspicions month in which young Dryden was to enter into the cighth yoar of his are. The court heing in proyre -, and Mr. Dryden at leisure, he was invited to the comutry seat of the Earl of lkerkshire, his brother-in-law, to $f$ ep the long vacation with him at Charlon, in Witts; hi. Iuty was invited to her uncle Mordaunt's, to pass the remaiuder of the summer. When they eame to divide the children, Ladr Elizabeth would have him take John, and sulfir her to take Charkes, but Mr. Dryden was too absohate, and they parted in anger. He took Charles with him, and she was oblied to be content with dohn. When the fatal day came, the anriety of the lady's spirits occasioned such an agitation, as threw herinto a violent fever, and her life was despaired of, till a letter came from Mr. Dryden reproving her for her womanish credulity, and assuring her that her ehild was well, which recovered her spirits, and in six weeks after she reccived an celaircissement of the whole allair. Mr. Dryden, cithee through fear of being reckoned superstitions, or thinking it a scienee beneath his study, was extromely cantious of letting any one know that he was a
dealer in astrology-therefore could not exeuse his absenec on his son's anniversary, from a general hunting match which Lord Berkshire had made, and to which all the adjacent gentlemen were invited. When he went out, he took care to set the boy a double exereise in the Latin tongue, which he taught his children himself, with a strict eharge not to stir out of the room till his return; well knowing the task he had set him would take up longer time. Charles was performing his duty in obedience to his father; but as ill fate would have it, the stag made towards the house, and the noise alarming the servants, ther hastened out to see the sport. One of the servants took young Dryden by the hand, and led him out to see it also-when just as they came to the gatc, the stag being at bay with the dogs, madc a bold push and lcaped over the court wall, which was rery low and very old, and the doge following, threw down a part of the wall ten yards in length, under which Charles Dryden layburied. He was immcdiately dug out, and after six weeks languishing in a dangerous way, he recovered. So far Dryden's prediction was fulfilled. In the 23rd year of his age, Charles fell from the top of an old tower belonging to the Vatican at Rome, oecasioned by a swimming in his head, with which he was seized, the heat of the day being excessive. IIc again recovcred, but was ever after in a languishing siekly state. In the 331d year of his age, being returncd to England, he was unhappily drowned at Windsor. Hc harl, with another gentleman, swam twiee aeross the Thames, but returning a third time it was supposed he was taken with the cramp, because he called out for help, though too late. Thus the father's caleulations proved but too prophetical."

Thesc facts, with a few variations, have also been published in "The Astrologer's Magazine" for 1793, "The Spirit of Partridge," a very interesting periodical, entitled "The Bee," and in several other works. Mr. Dryden did not think astrology a science bencath his study (as the editors of the Encyelopedia remark), or he never would have given so much attention to it; nor yet was he afraid to aeknorrledge his belief in astrology and his abilities to practise it, as many parts of his works dcmonstrate, particularly one of his letters, published in "Johnson's Lises
of the English Poets," to whieh I refer the ingennous reader

- Certainly, if man may ever fomd his glory on the achievements of his wisdom, he may reasonably cenlt in the discoverics of astrology. The genius of Roger Baeon, although he was the first of that seliool of natural philosophy, which acknowledges none bit experimental truths, whis nerertheless bowed to the doctrines of judicial astrolons, and his greater mamesake (Lord bacon), was still an argher in favonr of celestial influenees."-Ishmand's l'tolemy's Tetmbiblos.


## DEFINITIONS

## or <br> ASTRONOMICAL TERMS, \&c.

Aistrology.--Thanoble art of foretelling future cvents, by the motions and aspects of the heavenly bodies;-particularly by those of the planetary orbs.

Ascending.-A term denoting any point in the heavens rising above the castern horizon.

Ascensional Difference.-The difference betreen the right and obligue ascension, or clecension.

Aspect, from aspicio, to behold.-The situation of the configurating orbs, with respect to each other. They are of two kinds, zodiacal and mundane each being of equal porer.

Cardinal Points. - The north, south, cast and west points of the horizon.
———Signs.—Aries, Cancer, Libra, and Capricoru.
Declination.-The distance of the sun, planets, or fixed stars, from the equinoctial, either north or south.

Diurnal Arc. - The are described by the celestial bodies from the time of their rising to that of their setting. Horary time $\frac{1}{12}$ of this are.

Ecliptic.-A great circle of the sphere intercepting the equinoctial in the first points of Aries and Libra, making an angle of $23^{\circ} 28^{\prime}$ nearly therewith; named the obliquity of the ecliptic, or it is the apparent path of the sun in the hearens yearly.

Eieration of the pole or star, is its height in degrees abore the horizon.

Equinoctial or Equator, is a great circle of the sphere
whose poles are the poles of the world. The equator on the earth is the equinoetinl, when referred to the hearens.

Geocentric place of a Planet.-Its place in the heavens, as seen from the carth.
-L Latifude of a Planet.-Its distance from, measured by an are of a circle, drawn perpendicular to, the celiptic, north or south.
——_Longitued of "Ilanet, is its distance in the ecliptic from the first point of Arics asseen from the carth.

IIorizon.-A grent circle of the splere, dividing the carth and the heavens into two equal parts, which are called the upper and lower hemispleres.

Norturnal Are. - The are described by any celestinal body from the time of its setting to its rising.

Nicturnal Horary Time, is one-sixth of the star's seminocturual arc.

Oblique Ascension.-That point of the equiructial which rises with the centre of any celestial body in an oblique sphere.
——— Jecension.-That point of the cquinoctinl which sets with the centre of any celestinl body in an obliguc aphore.
-- - Sphere, is that position of the glohe, when either pole is elevated less than !(ow, and consequently the equator and its parallela cut the horizon obliquely.

Right Ascension.-That perint of the equinoctial which mones to the meridian with the centre of the sun, a planet, or fixcd star, computed from the firat point of Arics, or it is that point which rises with any celestial body in a right sphere, and the point which sets with it in like manner, is onlled its right decension.
-_-Shere.-Is that on which the equator and its parnllese cut the horizon at right angles.
X.3. When we speak of the rising, setting, or culmnating of any celestial hody, we refer to those phenomena occationed hy the diurmal motion of the earth on its own axis, which is the true camse of the apparent motion of the stars from east to west.

Solstitial l'uiits. - Cancer and Capricorn, and the equinoctial points, are the first poinfs of Aries and Libra.

Zorliar. - A belt surrounding the heavens, in the middle of which runs the ecliptic. It contains twelve constella-
tions, $r$ Aries, 8 Taurus, $I$ Gemini, $s$ Cancer, $\Omega l$ Leo, ul Virgo, $\bumpeq$ Libra, II Scorpio, $\ddagger$ Sagittarius, $\wp^{\circ}$ Capricornus, $\approx$ Aquarius, and $\because$ Pisces, which are called the twelve signs of the Zodiac.

Each sign is divided into 30 equal parts, called degrees, each degree into 60 equal parts, called minutes, and each minute into 60 seconds, and so on to thirds, fourths, fifths, \&c.

Abreviations.—* Sextile; $\square$ Quartile; $\Delta$ Trine; 8 Opposition ; R.A. Right Ascension ; A.D. Ascensional Difference ; O.A. and O.D. Oblique A scension and Decension; D.H.T. Diurual Horary Time; N.H.T. Nocturnal Horary Time; + Add; - Subtract; $=$ Equal to; $<$ Angle; Long. Longitude; Lat. Latitude; Dec. Declination.

## INSTRUCTIONS AND ILLUSTRATIONS

## PREPARATORY TO TILE

COMPUTATION OF PRIMARY DIRECTIONS,

> zODIACAL AND MUNDANE.

Horoscope referred to in the following Pages. 41.57.


The student should have a perfect knowledge of the following problems before he proceeds further in the calcula-
tory departments of Genethliacal Astrology, as they form the basis on which this ancient science is founded.

Stercographic projection of the sphere, on the plane of the meridian, by a careful attention to which the construction of the following diagrams will be easily understood.

ZENITH.


Construction. - With the chord of 60 degrees describe the circle Zenith H, Nadir H, and draw the diameter H H. Take the chord of 5326 , and set it from H to N ; then through the centre of the circle draw N A S .

Perpendicular to N A S through A draw E A E. From the points $Æ \mathbb{E}$, with the chord of 23.23 , sct off the points E © E , and makc $n$ is perpendicular thereto. Lay the tangent of 23.28. from $A$ towards $N$ and $S$, through which points and $\sigma \sigma^{\circ} \mathrm{b}^{\circ} \mathrm{b}$ describe the tropical circles 5 D 5 and $\vee 8 \mathrm{D}$ V゚. From A to B lay the tangent. of 30 degrecs, and from $A$ to $E$ that of 60 degrees, through which points and N S describe the circles NBS, NES, \&c. The meridians of celestial longitude $n \mathrm{~K} s$ and $n \mathrm{I} * s$
are deseribed in a similar mamer, laying the tangent of the required number of degrees, which in the above projection are 45 and 7.5 , from $A$ on the line $5 A$ in towards 3 .
lst. Then will the circle Zenith II, Nadir II, represent the brazen meridian, having its Nurth Pole elevated above the horizon 33. 8.

2l. X. is the North Pole, and S. the South Pole, and N. A S the axis of the globe.

3d. E.E.E, the Equator.
th. II II the IIorizon.
Sth.Zenith $A$ the prime vertical passing through $0^{\circ}$ Aries.

Gth. 18 A $\cong$, the Ecliptic, il its north, nul sits south Pole.

Th. $\equiv=$, the tropic of $\equiv$ and $\boldsymbol{w}^{2} n$, the tropic of Ca pricorn.

Sth. II X, the elesation of the North Pole above the horizon $=$ to the latitude of the place.

9th. NE S—N B O S—N K E S, Sc.-Mcridians of terrestrial longitude.
lUth. $n \mathrm{Kls} \mathrm{l}-n \mathrm{l} * \mathrm{~s}$, Sc. are meridians of celestial longitude.

Ith. In the right anglerl triangle A $B \odot-A \odot$ is the sum's longitude, or an are of the Eeliptic, from the first promt of Arica. A B, the sm's right ascension, or an are of the equator, from the first point of aries. $\quad \mathrm{B} \odot=$, the sun's tleclination, and the angle $B A \odot$, is the obliquity of the ecliptic, measured by the arc $£ \cong$, A's.

12th. In the right angled spherical triangle $A \mathrm{~B}$ I, $A B$ is the occasioual difference, and $B A$ I) the complement of the latitude measured by the are $11 / E$.

13th. $N n=$, the obliquity of the celiptic, or difference between the poles of the equator and the ecliptic.

14th. $n \mathrm{~K}$, the complement of the star's latitude IK.
lith. N $K$, the complement of its cleclination $\mathrm{E} K$.
1Gth. The angle $N^{N} n K$, the complement of the star's longitude.

17th. The supplement of the angle $n \mathrm{~N} \mathrm{~K}$, measured by the are $E A=$ the complement of the star's right asceusion.
N. B. The latitude, declination, 太c. of the leavenly bodies are north or south, accorting as they are si-
tuated on the north or south side of the ecliptic or equinoctial.

Problem 1. Given the obliquity of the ecliptic, and the sun's place to find his declination.


In the right angled spherical triangle $A B \odot, A \subset=\odot$ 's longitude from the nearest equinoctial point, and the angle $\mathrm{BA} \odot=23^{\circ} 28^{\prime}$ nearly,-the obliquity of the celiptic, are given to find $\mathrm{B} \odot=$ his present declination.

Rule.-As the radius is to the sine of the sun's longitude, $(A \odot)$ so is the sine of the $\odot$ 's greatest declination (or obliquity of the ecliptic $B \backslash \odot$ ) to the sine of his present declination $B \odot$.

Example.-In the foregoing horoseope to find the sun's declination.

| As radius | . | $\cdot$ | 10,00000 |
| :--- | :--- | :--- | :--- |
| Is to sine $85^{\circ} 2 \dot{2}^{\prime}$ | $\cdot$ | $\cdot$ | $9,99858^{\prime}$ |
| So is sine $23^{\circ} 23^{\prime}$ | $\cdot$ | $\cdot$ | 9,60012 |
|  |  |  |  |
| To sine declination $23^{\circ} 23^{\prime}=$ | $\cdot 9,59870$ |  |  |

This problem admits of no variation, execpt in taking the sun's longitude, which must always be computed from the nearest equinoctial point, and the declination will always be north, when the sun is in a northern sign, and south, when in a southern one.

Problem 2. Given the obliquity of the eeliptie, and the sm's deelination, to find his longitude.

This problem is exaetly the reverse of the former : for, in the right angled spherieal triangle, $A B$ © right angled at 13 . The angle $\mathrm{BA} \odot=23^{\circ}-2 \mathrm{~S}^{\prime}-$ and $13 \odot$ are given, to find $A \odot=$ his longitudinal place in the ectiptic.

Rule.-As the sine of the obliquity of the erliptic ( $B$ A ©) is to the sime of the sm's decelimation (B $\odot$ ), so is the radins to the sine of the $\odot$ longitnde ; whieh, it the declination is $N$, increasing, will be its trae distance from $r$. when thens formed. If $N$ declination, decreasing, the $(\underset{C}{ }$ longitude will be the supplement of this are. If it is $S$ deelination incrasing, add the are thus found to 180 ; but if South, derrasing, snbtract it from 3610 .

Exmmple 1. In the Illustrative horoscope, the $\mathcal{E}$ deelination was found to be $2,3023^{\prime} \mathrm{N}$ inereasing, required his longitmle.

| I = sine $233^{\circ} 24$ | 9.600121 |
| :---: | :---: |
| 1- to sinc - dec. 233023 | 9,398, 0 |
| So is ratins | 10,000000 |
|  | 9,99ヶ.i4 |

lixample :2. Suppose the smms deelination to be la" 2.9 N decreasing, reppired his lomgitnde.

| 1- sine | !, 6001: |
| :---: | :---: |
| Is to sine ${ }^{\text {a dec. } 180 \times 20}$ | 9,19811 |
| So is radius | 10,00000 |
| Tosine are $\%$ º $18^{\prime}$ | 9,408:32 |

As the sm's declination is in deerensing, the supplement of this are will be the sun's longitude, from the first point of $r$ thus $150-5018=127^{\circ} 12$.

This problem is of great use in direetions, viz. in fintmg where the sum forms a zodiaeal parallel with any planet, de.

I'robiem 3. The sun's deelination and longitude being griven, to find his right asecension.

In the smme dingram are given $A \subset=$ the smes longitude and the side $13 \bigcirc=$ his deelination, to find $A B$ his right asecnsion.

Rule.-As the cosine of the sun's declination ( $B \subset$ ) is to the cosine of his longitudinal distance from the nearest equinoctial point, $(A \odot)$, so is the radius to the cosine of his right ascension (AB), from that point whence this distance was taken.

If the $\odot$ or star be in $r \gamma$ or $\Pi$, the are thus found will be the right ascension. But if it be in $s \boldsymbol{\Omega}$ or $\pi_{l}$, it must be subtracted from $180^{\circ}$. If in $\bumpeq M$ or $f$, it must be added to $180^{\circ}$. If in $19^{\circ} \sim$ or $\begin{gathered}\text {, the are must be sub- }\end{gathered}$ tracted from $360^{\circ}$.

Example. Suppose the (o) longitude to be $85^{\circ} 22^{\prime}$ and his declination $23^{\circ} 23^{\prime}$, as before, required his R. A.

As cosine $23^{\circ} 23^{\prime}$
Is to cosine $85^{\circ} 22^{\prime}$
So is radius
 8,907:29
10,00000
To cosine R. A. $\odot=84^{\circ} 57^{\prime}=8,94451$
Problem 4 th. The longitude and latitude of a star beiner given to find its declination.


In the above diagram let $A$ represent the position of a star in a northern sign with south latitude : $\tau \mathrm{B}$ is its long. from $r$. B A its latitude south, and $C$ A it declination north. Then in the oblique angled spherical triangle $A \mathrm{~s} \mathrm{~S}$, are given $A \mathrm{~s}=$ the complement of the star's lat.
s $\$$, the differenee betrecn the poles of the equator (. . .X) and the celiptic ( $r=$ ) with the inchuded angle $s=$ the star's longitude, to find $\mathrm{C} A$ its declination, take the angle APp.


In thi- dagram A representa a star in a southern sign, with southerin latitude also. $\bumpeq \mathrm{B}$ is its longitude, $\mathrm{B}: \mathrm{A}$ its. lat. Then in the obligue angled spherical triangle $\lambda \mathrm{S} p$ we have $\mathrm{d} S=$ the complement of its lat. $\mathrm{p} S,=$ the obliquite of the celiptic, with the angle $p, S 1)=$ its longitudimal distance from the solstitial point $v$. To find $C$ A the star's deelination. For which we have the following rules:-

Rule 1. As madius is to the tangent of $23^{\prime \prime} 28^{\prime \prime}(1, S)$, so is the sine of the longitudinal distance (co. $>\mathrm{S}$ ) from the nearest equinoctial point to the tangent of the first alugle (S D).

End. If the latitude and longitude have the same denomination, i. e. if the latitude le north, and the star is in a northern sign, or south and the star in a southern sign, the latitude must be sultracted from $90^{\circ}$. But if the latitude and lougitude are of different denominations, the latitude must be added to $90^{3}$; subtract the first angle (S D) from the sum or remainder ( $A S$ ), and it will give the amount of the second angle ( $\alpha \mathrm{J}$ ).

3rd. As the co-sine of the first angle ( S D ) is to the co-
sume of the sccond angle ( $A \mathrm{D}$ ), so is the cosine of 23.28 . ( $\mathrm{p} S$ ) to the sine of the declination required.

Example 1st. Suppose $\underset{7}{ }$ in $\square 3^{\circ} 9^{\circ} 5^{\prime}$ as in the exemplary horoscope with $3^{\circ} 45^{\circ}$ south lat. required his declination.

Sce the first diagram.

| As radius | 10.00000 for |
| :--- | ---: |
| Is to tang. P p $23^{\circ} 28^{\prime}$ | 9.63761 |
| So is sinc angle p P D $63^{\circ} 25^{\prime}$ | 9.95147 |

'To tang. first angle p $\mathrm{D} 21^{\circ} 15^{\prime} 9.5890 \mathrm{~S}$
As the latitude and longitude are of different denominations, lat. $3^{\circ} 43^{\prime}+90^{\circ}$ a $p 93^{\circ} 40^{\prime}-1$ st. $>21^{\circ} 13^{\prime}$ $=72^{\circ} 32^{\prime} \mathrm{A} D$ the second angle.

| As the cos. plo $21^{\circ} 13^{\prime}$ | 9.96952 |
| :---: | :---: |
| 1s to cos. $2 \mathrm{~d} .>$ A D $722^{\circ}$ | 9.17734 |
| $S_{0}$ is cos. $\mathrm{P} \mathrm{p} 23^{\circ} 28^{\prime}$ | 9.962.3l |
|  | 9.4398 .5 |
|  | 9.96952 |

To sine of the declination $=17^{\circ} 11^{\prime} \quad 9.47033$
The declination being greater than the latitude and $¥$ being in a northern sign is north; but had the declination becn less than the latitude it would have been south, because the latitude is south. Another example, I trust, will make this important problem familia. to the ingenious student.

Example ${ }^{2}$ nd. The place of the eminent star Arista or the Virgin's Spike in 1832 is $\bumpeq \underline{2} 1^{\circ} 29^{\prime}$, with about $2^{\circ}:$ s . lat. ; let its declination be required.
ln diagram 2 nd .
As radius $\quad 10.00000$
Is to tang. ( ps ) $23^{2} 28^{\prime} \quad 9.63761$
So is sine $(\mathrm{cos} \mathrm{s})-21^{\circ} 99^{\prime} \quad 9.5637 .5$
To tang. Ist arc S D $9^{\circ} 2^{\prime}$ Aran 9.20136

A, the latinde and longitude are both south, it is en-
 is. if (l).1) is the second angle. Then according to the Brd rule-

$$
\begin{aligned}
& \text { A. rosines } \mathrm{D} \text { g a'lnt }>\text { 9.994in4 }
\end{aligned}
$$

$$
\begin{aligned}
& S_{0} \text { is cosilte ps } 23^{\circ} \text { 26" } \\
& 9.9100^{\text {N }} \\
& 9.2+1501 \text { - whtran. }= \\
& \text { 9.9915~? } \\
& \text { To sine C.I dee. } 93 \times 46 \mathrm{~S} \text {. } 9.2 .112
\end{aligned}
$$

lanamably when the dechation is greater than the latitude, if will be of the same name as the sign the star is in, north or south; but if the latitude he greater thim the derlimation, and of an opposite samomation to the sign, the derelmation wall be north or somth, according to the denomimation of the latitule.

The right arem-ion of a planct may lo fomed by having only the longitude and latitude given, hat as the operation 1. buther tediona, and the declination is always required, tahe the following cary rule, laving first obtained the decluntion as rbove.
l'romasy ith. Given the longitude, latitude, nud declination of a planct or fived star, to find its right ascension.


In the oblique spherical triangle $A B C$ are gisen the angle $A C B$, the co-longitude. $A C$ the co-latitude, and AB the co-declination of the planet or star, to find its right aseension, viz. the co-angle at B.

Rule. As the cosinc of the star's declination is to the cosine of its longitudinal distance, so is the cosine of its latitude to the cosine of its right aseension.

Examplc. In the figure, page 18 , required the right ascension of $\vartheta$, his latitnde being $3^{\circ} 4.5^{\prime} \mathrm{S}$.

| As cos. $17011^{\prime}$ decl. $\bigvee$ | 9.9801\% |  |
| :---: | :---: | :---: |
| Is to cos. $633^{\circ} 25^{\prime \prime}$ long. Y | $9.6 .0979^{2}$ | 4v2 |
| So is $\cos .3^{\circ} 45^{\prime}$ lat. Y | $9.9990{ }^{3}$ |  |
|  | $9.64986$ | Jina |
| To cosine of $\mathrm{R} A=6 \underline{9}^{\circ} 8^{\prime}$ | 9.66969 |  |

Problem 6th. The latitude of the plaee, and the deelination of a star, being given, to find its aseensional difference.


In the right angled splerieal trimgle D If Xi are given If N , the latitude of the place, and 1 ) $\overline{\text { the the complement of }}$ the deelination, to find the anghe D N H, which measured he the are $B \mathcal{E}$, is the complement of the A D required ; and in the angle $r \mathrm{BD}$, are given the angle $\mathrm{B} r \mathrm{D}=$ the colat. and B 1) the declination, to find $r$ B, the ase. difif.

Rule. As the radius is to the co-tangent of the colat. $(>\gamma)$, or tangent of the latitude, so is the tangent of the decliuation (B 1) in the sine of the ase. difl. $r$ B.

Example. The latitude of Shettich is $33^{\circ} \geq \mathrm{O}^{\prime} \mathrm{N}$ required the sum's anemiomal differenee in that latitude when his


| As radins: | 10.00000 |
| :---: | :---: |
| 1- to tang. latitude . $33^{\circ} 96^{\prime}$ | 10-129-3 |
|  | 9.63583 |
|  | 9.76 .561 |

I'rontim Th. To find the semi-dinmal are of a star.
Rule. - If the star hase north cleclination, add the as-ma-ional dilli rence to 90. If sonth, subtact it from 90 , the remainuter is the required are.
'This is so phain that it requires no example.
Puomer:usth. To find the semi-noct nenal are of a star.
Rule. - Add or sabtmet exactly eontrary to the rule in the tormer problem. (lis subtract the semi-dinrnal are from 101 it will gre the semi-nocturnal are required.

Puonuly mith. To find the oblique ascension or oblique descemsion of a star.

Rule.-If the star liave north declination, subtract the ascensiond ditfirence from the $R A$, the remainder is the oblique ascension. If south declination, add it instead of subtracting.
lit the star have north declination, add the ascensional Wifference to the right ascension, and if south subtract it, the remaimer is the trne obligue decension required.

The reason of this and the two former problems will
suffieiently appear, from an inspection of the preceding projection of the spherc.

The semi-diurnal or semi-noeturnal are may be found without the ascensional differenee, thus:-

In the right angled spherical triangle N. H. D. page ${ }^{2} \overline{7}$, are given H. N. the latitude of the place, and D N. the distanee of the sun or star from the North Pole, that is, the complement of the declination to find the angle at $N$. from midnight or semi-noeturnal are; then,

As the radius
Is to the tang. of the latitude,
So is the tang. of the dec.
To the cosine of the semi-noeturnal are.
If the latitude of the place and declination be one north and the other south, the result of the above calculation will be the semi-diurnal are.

Problem 10th. Given the right aseension, declination, and semi-are of a star to find its pole in any figurc.

Rnle.-As the semi-arc, (diurnal or noeturual, aceording as it is posited above or below the earth) is to $90^{\circ}$, so is its distanee in right ascension from the meridian or fourth house, (which must be ascertained by subtracting the R A of the MC, or R A of the I C from or by the RA of the star), to the differenee between its circle of position and that of the meridian; which diffcrence subtracted from or subtracted by its right distanee, (alrays taking the lesser. from the greater) will of course give its true ascensional difference under its own pole.

Then having the ascensional difference and deelination of the star, its pole may be found by reversing problem 6 th. Thus, from the sine of this ascensional difference subtract the tangent of its deelination, the remainder will be the tangent of its pole. Or, to the sine of the ascensional differcnce, found as abore, add the eo-tangent of its deelination, the sum will be the tangent of its pole as beforc.

Example.-Let it be required to find the pole of the sun in the exemplary figure.

Its R A by problem 3rd was found to be $84^{\circ} \mathbf{5} 7^{\prime}$, and its A D by problem 6th $=35 \circ 39^{\prime}$. Dee. $=23^{\circ} 23^{\prime}$.

Then to find its semi-diurnal are.

| As its dec. is North, add |
| ---: |
| C semi-diurnal are $=$90. 0 <br> 35 $\cdot 39$ |
| 19.5 |



- Neminer R. D.


$$
\because \therefore \mathrm{RD} \text { from M. } \mathrm{C} .=43 . \quad 0
$$



$$
\text { Fis D. I). mader its own loole . } 12.12
$$



I Intter myself that by enrefully attending to the above procese, and eomparing it with the preceding rule the infremons stuldent will find no dilliculty in making any similar calculation.

Probsi:m llth.-To find the pole of nuy celestina house, eommminated by "Raphacl",

Role 1. The poles of the honses are at all times calculated by supposing the © posited on the cusp of the honse in question. Suppose the smposited in ()". Go Lat. .i3" Then proceed thas:-

1. To tangent of "3. 25. ©'s declination. 'acules. + Tang. of the lat. of place of birth.
The sum will be the usc. diff. of the house or $(-$
Ond. llaving found the ase. diff. of the assumed $\rho$ or $\mathrm{l}^{\text {cole, y y }}$ y have his semiare cither diurnal or nocturnal.

Ord. As $\odot$ 's semiare is to 90 . so is the right distance from the 10 th or 4 th house to the difference between the circle of position, and that of the meridian, which differenct subtracted from, or subtracted by its right distance, taking always the lesser number from the greater, will give the ascensional difference under the pole.
th. To sinc of asc. diff. thus found + cotang of declination.
The sum will be the tangent of the pole of the house.
Note.-The distance of the imaginary $\odot$ or pole of the housc is easily taken; thus ${ }_{3}^{\frac{1}{3}}$ of the semiare is the distance when the $\odot$ assumed is on thic cusp of the 11 th, $i$ ith, 9 th, or 3rd, $\frac{2}{3}$ when on the 12 th, 2nd, (6th, or Sth, the whole semiare when on the east or west angles, is the right distance.

Thus for the pole of the 11 th in the above latiturle and declination.

$$
\begin{aligned}
& \text { Tang. } \odot \text { of } 23.28 .=9.6 .3761 \\
& + \text { Tang. of } 53 .=10.12280 \\
& \text { Sinc of asc. diff. }-\frac{9.76050}{}=3.5 .11 .
\end{aligned}
$$

$$
\text { Semiare of } 11 \text { th }-\frac{90}{12 .} \frac{90 .}{12.11}
$$

Semiare

$$
\text { R. D. from 10th. 41. } 44 .
$$

11.: 90. : 41. 44.: $30 .-\overline{30 .} 0$.
A. D. of 11th or imaginary $\odot-11.4$.

Sinc of asc. diff. 11. 4. $=9.30826$

+ Cotang 23. 28. $=10.36239$
Tang. of pole of 11 th $=25.6 .=9.6506 .5$

Then for the pole of the 12th house.


As 120.11.: $90:: 83.97 .: 60$. 83. 27. 60 . 0.
$23.27 . A . D$. of 12.

Sime 23.27. - 0.59982

- Cotang. declin. - 10.302:39

Tang. pole of 12 th $=9.96 \div 21$ or 42.34 .

These rules and examples are nearly verlatim ns I recerred them when under the tuition of Raplanel, whose pmpil latterly I neknowledge myself to lave becu, and to whose valuable instructions many besides myself have owed their knowledge of the starry scicuec. I have had a regular correcpendence with him, and have the phensure to affirm that his judgencot on the sereral uativitics examined by him, nfter my calculations aud judgment were given, iuvariably corresponded with mine, and I take the present opport mity of expressing my thaks, and stating, that had it not beem for the encomragements repentedly received from him, this treatise would never have nppeared to the public eye.
The poles of the honses, as I observed before, are at all times calculated by supposing the sun posited on enelt of their cusps, always enking his dectimation at 23 . 28. and from thence obtaining his seninare aecording to the Intitule of the place.
But this metlind 1 lave demonstrated to be incorrect,* for supposing the sim to be placed on the cusp of any hone-say the 11 th, it will be found that its asc. diff.

[^1]under the pole of the llth, applied to its right aseension, will give its oblique aseension different to the oblique ascension of that house, which ought by no means to be the case, for it is evident that when the sun is on the eusp of any house their poles will be the same, (both having no latitude), and consequently their 0 . A's or 0 . D's will agree also. From these considerations it will appear that the poles of all the houses, exeept the asc. and serenth, are moveable, solely depending on the place and declination of the solar orb; and may be calculated in the same manner as formerly, only taking his present semiare instead of that when plaeed in 0 . or hp 0 . Thus let it be required to find the polar elevations for the horoscope. Page 18.

First find the sun's semidiurnal arc. thus : $\lambda$ hs he is in a northern sign according to the rule, add his ase. diff. to $90 .-90 .+35.39 .=125.39 . \odot$ 's S. D. arc.


In the above diagram, let $E$ and $W$ represent the east and west points of the horizon in any latitude, $Z$ the zenith of the place, E Z the aseending, and ZW the descending parts of heaven. Z N the cirele of position of the meridian, 30.60 .90 . in the eastern hemisphere, circles of position of the oriental houses, dividing the arch from the horizon $E$ to the zenith $Z$ into 3 equal parts; $Z \mathrm{c}$ is the $\odot$ 's semidiurnal areh, divided also into 3 equal parts, $b c$,* then will $30 . a$ be the sun's A. D. under the pole of the 11 th house, 60.6 his ase. diff. under the pole

* The western hemisphere $Z W$ is divided in a similar manner.
of the $12 t h$, and 90 . e the sun's ascensional difference under the pole of the aseendant.

Then having the sun's declination and his A. D. under the poles of each house, the pole of the house will be found be reversing l'roblem (ith. Thus: - As the tangent of the 's dechation is to the radius, so is the sine of his ase. difl. to the tangent of his pole when on the cusp of any house, or sine ase. difl. + cotang. declination $=$ tangent of the Pole.

Example--liequired the Poles of the houses for the latitude of $\mathbf{i 3}$. 26 . and at the time given in the illustrative horoscope, ©"s dec. 23.23 . semiare 12.3. 3!.

For the lole of the 11 th house.

$$
391: 3.39
$$

Zat 11. $33 .-30.11 .83 .30$ a. the $\odot$ ase. difl. mulur the pole of the Ilth honse.

$$
\begin{aligned}
& \text { Sine } 11.83 . \quad 9.31370 \\
& + \text { Cotang. du. } 23.23 . \\
& \hline 10.3641:
\end{aligned}
$$


The l'ole of the lith honse.
as are 10.3.3!
$\div \frac{\because}{3) \cdot 51.14}$
 the 10 th honse.

$$
\begin{aligned}
& \text { Sine } 23.16 . \\
& + \text { Cotang. } \\
& \hline
\end{aligned}
$$

Trangent of the Pole of the 1 ? th house 12. . $9 .=9.96911$
The Pole of the ascendant is i3. 2 . or it may be taken in the same way, subtracting 90 . from the whole semiare for the ase. diff. 90 c . of the asecmelant. The seminocturnal are may be taken in the same maner as the semi-diurnal are, adhering to the following rule.

Rule 1 st.-Take the difference between 30. and $\frac{1}{3}$ of the sum's semiare for the ase. diff. of the $3 \mathrm{bl}, \mathrm{jth}, 9 \mathrm{th}$ and llth houses. The diflerence between GU . and two-thirds
of the semiare, will be the ascensional difference of $2 d$, Gth, 8th, and 12 th houscs. The latitude of the place is the Pole of the ascendant and 7 th house.

2d.-To the sinc of the ascensional difference thus found, add the cotangent of the sun's declination, the sum will be the tangent of the Pole.

The last diagram will also exemplify the method of obtaining the Plancts' Poles, by eomparing it with the rules given for that purpose.

From thesc illustrations it has become sufficiently elear, that as the sun's declination and semiare increase or decrease, the ase. diff. of all the houses, exeept the asc. and 7 th, varies also; proving, as I before statcd, that the Poles of those houses are moveable.

The Poles are useful in finding the degrces, 太e. on the cusps of the houscs, and may be used in directing a significator to any mundane aspect, but there is another method of directing, much easier, which will be given in its proper place, and of course thesc Poles are seldom requircd.

Problem 12 th. -To find What point of the eeliptic occupies the cusp of any eclestial hotse at any given time.

Ist.- For the cusp of the medium eocli haring its right ascension and the obliquity of the ecliptie giren.


In the above diagram are given $A B$, the right ascension of
the medium coeli (the right ase. of the sun when on the meridian), from the equinoctial point $\gamma$ or $\Omega$ with the angle $B$ A $C$ the obliquity of the eeliptic, to find A $C$ the are of the eeliptic from the same point ( $\gamma$ or $\Omega$ ) to the meridian.

Ruma.-As the tangent of the right asemsion ( 1 B ) from the nearest equinoctial point is to the ratius, so is
 (A ') the longitude from the same equinoctial point.

Then add 30. to the R . 1 of the M C and the sum will he the oblique aseension of the llth house under its own pole. . Ddd 30 . more and you will have the obliene ascemsion of the 12 th house inuder its eelestial Pole, 30. more will give the (). I of the aseemdant; if 120 . be added to the R $I \mathrm{I}$ of the. OC , the $\mathrm{O} A$ of the O d house will be ohtaned, and 30. more will give the $O A$ of the 30 house.
-d.-To the ensine of the obligne aseension of the house taken from the nearest equinoetial point, add the mongent of the lole of the house, the sum will be the ( stangent of the first are.
$3 d$.-If the 9 . 1 of the lonse be nearest to Aries, add 23. 24. to the first are, but if nearest to hibra, subtract $2: 3.2 \times$. from the first are, or its complement, the sum or remainder will be the seeond are.
thi.-A, the cosine of the 2 are
Is to easine of the first are, So is the tangent of the $O .1$ of the house To the tanerent of its longitude.
If the second angle be less than 90 . the longitude must be reekoncel from the same equinoetial point the 0 A was tahen from, but if more than 90 . it must be taken from the other point.

Example.-Let it he required to find the points of the eeliptic oceupring the cuspes of the twelve celestial houses in the theme of heaven, before referred to.

The loles of the 3d, 5th, 9th, and 11 th are, $2: .2$.
 of the ase. and seventl $\quad .33 .26$.

The $\mathrm{R} . \mathrm{A}$ of the $\mathrm{MI} \mathrm{C}=41.5 \%$.
+30.0 . $\quad$ 1. 37. 0.1 of the 11 th

$$
\begin{array}{rlrl}
+30.0 . & =101.57 .0 \mathrm{~A} \text { of the } 12 \text { th } \\
+\overline{30.0 .} & =131.57 . \\
+\overline{30.0 .} & =161.57 . & \cdots & \text { ase. } \\
+\overline{30.0 .} & =191.57 . & \cdots & 3 \mathrm{~d}
\end{array}
$$

Then for the longitude of the medium eali. As tangent of the R.A.M.C. from $\vee 41.57 .=9.95367$ Is to radius . . . . . . . . . $=10.00000$ So is cosine of obliquity $\quad . \quad .23 .28 .=9.962 .51$

To cotang. of longitude from $\mathfrak{r} 44.25 .=10.00884$

So that the longitude of the MC is 14.25 .5.
For the long. of the 11 th house.
To cosinc of O A of the llth . 71. 57. - 9.49115

+ cotang. Pole of 11th . . 25.28. - 10.32215
$=$ cotangent of the lst arc $.56 .57 .=9.81330$
As the $O A$ is nenrest to Arics +23.28 .

$$
\text { Seeond are } .=80.25 .
$$

As cosine 2 d are . . . . . 80. 25. - 9.22137
Is to cosine of lst are . . . 56.57. - 9.73669
So is tangent of OA of 11 th . 71. $57 .-10.48694$
10.22363
9.22137

Tangent of the longitude of the llth from Aries . .
84. 19. $=11.00226$
answers to 1124.19 . Which must be placed on the Which cusp of the llth house.

Next find the longitude of the 12 th.
Its 0.1 is more than $90^{2}$. then take its distance from the first point of $\Omega$, thus, $1 \mathrm{~s}(0 .-101.8 \%-78.3$.

To cosinc 0.1 of 12 , short of $\bumpeq$, $78.3 .-9.31609$

+ cotangent Pole of $12 t h_{1}$. $42.59 .-10.03360$
- Cotangent of the first are . 77. 29. - 9.34669

I- the O. of the l? th is nearest $\Omega,-23.28$.

$$
\text { Second are }=. i 1 . \quad 1 .
$$

As cosine of the ${ }^{2}$ d are . . . . 54 . -9.7690 :
Is to cocine of the lat are . . . $77.29 .-9.33591$
So is tmugent of $0.112 t h$ house . is. 3. - 10.67439
$\because 0.01030$
$9.7690-4$
Tang. wt the hang. of the l?th short of $\bumpeq$, (io. 9. $-10 . \therefore 11 \% 6$ Then 1no. - (i0. 9. - 119. il. its long. past $\gamma$, answering to $¥, 96$. . 1.
The cusp of the nacendant is thas found.
 T'o cosine O 1 of naceml. . . . . As. 3. - 9.sizion

+ cotang. l'uke of nsc. . . . . $53.26 .-9.570 \geq 6$
$=$ cotonge of the first are $\quad . \quad .63 .38 .=9.69 .33 .5$
Is the 0.1 of the nse. is nearest $\bumpeq,-23.25$.

$$
\text { Second are }=.40 .10
$$

As cosinc of 9 d arc . . . . . 40. 10. - 9.88319
So is tangent of 0.1 asc . . . 4s. 3. - 9.64740
Is to cosint of 1 st arc . . . . 63. $38 .-10.0163:$
Totangent of long, of asc. short of $\Omega, 32,53 .=9.51062$

Then 180. - 32. 53. $=147.7$. past $r$, answering to 527.7 . which must be plaecd on the ascendant.

Calculation of the degrees on the cusp of the 2d house 180. - 161. 57. $=18$. 3. distanee of its 0 A short of $\bumpeq$. To cos. of 0 A of 2 d house short of $\Omega, 18.3 .-9.9780 \mathrm{~s}$ + eotangent of Polc of 2 d . . . 42. 59. 10.03060
$=$ cotangent of the first are $\quad .44 .26 .=10.00868$
Its 0 A being nearer to $\bumpeq$ than $r-23.28$.

As cosinc of 2 d arc . . . . . . 20. 58. - 9.97025
Is to cosinc of 1st arc . . . . 44. 26. - 9.8.537.4
So is tangent of $O A$ of the 2 d house, $18.3 .-\frac{9.51306}{\begin{array}{l}9.36680 \\ 9.97025\end{array}}$
To tangent of the long. of the 2 dd
house short of $\Omega$. $\mathrm{A} .0 .=\overline{9.39655}$

> 180. $-14 .=166$. past $r$, answering to mb, 16.0 . the longitude of the sccond lousc.

Lastly, the cusp of the 3d is thus ealculated, 191. 57. $180=11.57$. its distance in $0 \AA$ past $\bumpeq$.

| cosine of O A of third house | 11. $57 .-9.990 .46$ |
| :---: | :---: |
| $t$ cotangentof Polc of 3d house | 25. 28. - 10.32215 |
| cotangent of the lst arc | . 3 |

It is still nearer $\bumpeq$ than $r-1-23.28$.

$$
\text { Seeond arc . . } 2.30
$$



Totang. of the long. of the 3 d house, $\bumpeq 10.17 .=9.27980$

The cusps of the first 6 honses are all that require ealenlating, as the opposite honses always have the same degrees and minutes of opposite signs.

This is the most seientifie method of erecting a " theme of hearen;" but fur those who have a eclestial grlobe, the following problem (which heis nerer been given in any former work), will be of great serviec on account of its case and simplicity.

Pronlenv 13th.-To erect an horoscope hy the Globe.
Rnce 1.-Haring obtained the poles of the houses in the mamer before tanght, rectify the globe for the latitnde of the place of birth, that is, clevate its north pole above the horizon an equal momber of degrees and mimites to the latitule. Find the right ascension of the MC C on the equator, and when it is brought to the meridian, the point of the erliptic ent by the meridian will be the longitnde of the mill heaven.
$\because .-$ Find the $O .1$ of the ascendant on the equator also, and brine it to the horizon, then the point of the eeliptic cont liy the horizon will be the longitude of the asemmant, or first house.
3. - Rectify the globe for the pole of the elerenth, find the ().I of the elerenth, and proecel to find its longitude in the same manner yon did that of the ascemant, riz. by neertaining the decree and mimnte of the ectiptic cut by the horizon, with the $O$ A as aseending.
1.-Find, in the sane manner, the 0.1 of the third honse and muder the same elevation, its cusp may be determined as before.
ith and lastly:-Rectify the glohe for the pole of the iwelfth, and mider this clevation find the longitude from its 0.1 as aboce. Cuder the same elevation with the $0 . A$ of the sccond honse, the degrees and minntes on the cusp] of the sceond may be found, always observing to determine the longitnde of the mid heaven on the meridian, and that of all the other honses on the horizon.
'The expeclitionsuess of this method will soon be apparent, and it will be found sufficiently canct for all practical purposes.

Problem 14.-To direet a signifieator to any part of the heavens, or any star, conjunetion, or aspeet, without Intitude.

The following diagram will explain the theory of primary zodiacal directions.


The above is from Leadbeatcr's Astronomy, and is well calculated for the purpose for which it is given; the characters of the aspects are marked, which renders further explanation not rcquisite.

Rule.-Find the truc obliquc ascension or deeension of the star (according as it is in the ascending or deseending part of the heavens) under its onm celcstial Polc, and subtract this from the oblique asc. or deceusion of the conjunction or aspcet taken under the same Pole, the remainder is the true celestial are of dircction.

The taking of the $O A$ or $O D$ of the aspcet under the same Pole with the significator (as the author of the Manual judiciously obscrves), is nothing more than mea-
suring the aspect by; or under the same plane, as the significator.

Example.-Direet the sun to the conjunction of Mars in the zodiae. The sm's pole eli. 3., the lat. of Mars 1.16 . N. dee. 21.49 . $N$. and the sum's dec. 23.23 . N.
 The $->$. 1 D under his own pole, by Problem 10, 12. 12. The suis: $O$ A maler ditto . . . . . . $=\overline{72.45}$

Now for the $R A$ and $A$ D of of under the same pole.


So in the cosine of his lat. 1. 16. . . . 9.9998!


To cosine of $\delta^{\prime \prime} \mathrm{s}$ right ase. $==9.700 .41$

| Tancent is pole | 2(i. 3. - 9.6891-1 |
| :---: | :---: |
| 'Tangent ós dec. | 21. 19. - 9.60239 |
| Sine, $\delta \therefore=, 1 \mathrm{I}$ | 11. $17 .=0.291 .3$ |


| 1 l .1 of 8 | 120. 7 |
| :---: | :---: |
| A l) of d | 11.17. |
| O 1.1 of aspect | 10s. 30. |
| - OA of the | 73. 1. |
| Are of direction $\odot \delta \delta$ | 36. |

Problem $1 . \mathrm{i}$.-To direet a significator, with latitude. Spe the last diugram.
Rule.-From the true oblique asecasion or deension of the aspeet, taken as before, moter the pole of the significator; subtract that signifieator's oblique aseension or obligue elecension under its own pole, the remainder is the are of direction required.

Example.-Direct the D to the $*$ of Saturn. The D's lat. being 2. 52. N., dee. 3. 33. N., and her pole $=34.1$
1.-Obtain the D's R. A. as significatrix. See the Problem on Mundane Directions, where the R. A. was found to be 179. 13.
Thangent of the D's Pole . 34. 1. $=9.82936$
Tangent of her dec.
3. 33. $=8.79266$

Sine of the D's A. D. under her pole $=2.24 . \quad 8.62192$

$$
\begin{aligned}
& \text { R. A. of the Moon }=170.13 . \\
& \begin{array}{rr}
\text { A. D. of clitto } & 2.24 . \\
O \text { Asc. of the Moon= }=176.49 .
\end{array}
\end{aligned}
$$

The $*$ of $h$ falls in 27.6. $\simeq$, where the D has 4. 43. N. lat., and 5. 52. north declination. Find the R. 1. of the aspect thius.



0 A of aspeet monder D 's pole $=202.54$.
0 A of the $D$ under ditto . $=176.49$.
Are of direction $D * h \quad=\underline{26 . \therefore}$.

## of MCND.ANE PRDLIRY DIRECTIOMS.

First.-To the Angles.


In mundane dircetions one houve has the same significatom as nue sign in the zotliac; thus two signs or two houses form a sextile; threc houses make a mundane quartile; four a munclane trine ; four mod a half make the sespuiquadrate, and so on. 'The mundame aspeets to the angles are measured by the semiare of the promittor: thus the whole semiare makes $a=, \frac{2}{3}$ the $*, f$ the $\Delta$, a semiare and a half the sesquiquadrate, Se.

From this diagram it is evident that when the nseendant is to be directed to the opposition of a star, that star must be brought to the cusp of the seventh house; if to the trine, it must in like mamer be on the cusp of the ninth, if above the carth, or on the fifth belor the earth.

To direct the ascendant to the quartale of any promit. tor, bring it to the eusp of the tenth house if above the earth, and to the cusp of the fourth if it is in the noeturnal hemisphere. If to the sextile, bring it to the cusp of the third or cleven th house, aceording to its situation; if to
the eonjunction, of course it must be brought to the eusp of the aseendant.

The sesquiquadrate aspeet must be found by bringing the star to the middle of the eighth or sixth house; and the semiquartile is formed when it arrives in the middle of the elerenth or second house.

These are the prineipal aspeets, but the proportions for the semisextile, quintile, biquintile, \&c. will be given in their proper place.

To direet the midheaven to the opposition of a star, bring it to the eusp of the fourth house ; to the trine, bring it to the sceond or sixth house; for the quartile to the ascendant or seventh ; to the sextile, it nust be brought to the cusp of the twelfth or cighth. The sesquiquadrate aspect falls in the middle of the seeond and fitth honses. All aspeets in mundo are measured by the semiare of the promittor. Thus a scatile is two-thirds of the semiare, (diurnal or noeturnal aceording to the promittor's situation), the scmiquartile is half a semiare. The quartile is a whole semiare, the trine is a semiare and one-third; the sesquiquadrate is a semiare and a half; the opposition is of course a whole diurnal or nocturnal are. The quintile is one-fifth of the semiare less than the quartile, and the biquintile is double the quintile.

Having well considered the nature of mundane aspects, take the following easy rules for ealeulating them :-

Rules.- If the star be abore the earth, to bring it to the cusp of the ascendant, subtraet its semi-diurnal are from its riglit aseension. If to the cusp of the twelfth, subtract two-thirds of its semi-dimmal are. If to the eusp of the elcrenth, subtraet one-third. If to the eusp of the tenth, neither add nor subtract. If to the cusp of the ninth, add onc-third of the said semiare. If to the eusp of the eighth, add two-thirds. If to the eusp of the serentl, add the whole scmi-diurnal arc.

Universally in all the above problems, subtract from this sum or remainder the right ascension of the midhearen, the rcmainder will be the arc of dircetion.

Rules. - If the star be below the earth. If it is to be brought to the eusp of the sixth, subtract two-thirds of the semi-noeturnal are from its right aseension. If to the fifth, subtract one-third. If to the fourth, neither add nor sub-
traet. If to the (hire, add one-third; and if to the second, add tro-thirds of its semi-nocturnal are.

Subtract from this sum or remaindery, the right asecusion of the 1 mum Codi, the remainder is the are repuired.

Example lat. - In the ilhustrative horoseope before referred to, it is reguired to direet the aseendant to the trime of Jupiter. His lat. is 50 s. and dee, $1.1^{\circ} .33^{\prime}$.

First olbtain the right asecusion, thus,


'Tancent of latitude of birth-place . 10.103973

$=-$ Sine of $A$ ) under pole of birth place $\because 10$
9.a.: 123

Brome $\because$ to the carp of the fifth house.

$$
\text { light ase of } 2 . \quad . \quad 323 . \quad 7
$$

- ' of $111^{\prime \prime 2}$ : semi-nocturnal are . 37 . 11

2n(i. 7

Are of direction required Gl. 10
The trine is fomr houses, and the sesquiquadrate fonr houses mad in half: i. e. $\frac{1}{0}$ of the semiare more than the trine.

Example'nd.-Direct the ase.t o the sesquiquadrate of 1.
Here Jnpiter forms the sesquiguadrate lofore the trine.
Then from the are of dircetion for the $\Delta 6$ equ $10^{\circ}$
Subtract $\frac{1}{6}$ of 2 's semi-nocturnal are . 18. 30
Asc. to the sesquiquadrate of $1=\operatorname{Arc}=4.5 .40$
Example 3rt.-Direct the ascendant to the quartile of 2.
lícre Jupiter must be on the cusp of the fourth to form a quartile with the ascendant.

Then from the right asc. of $\Psi$. . 323. 7
Subtract the right ase. of the I.C. - 221. 57

$$
\text { Asc. to } \square \text { of } 2 \text { Are . . 101. } 10
$$

The native will never live to see this period; but by way of example let it be required to dircet $\mathscr{H}$ to the sextile of the ascendant.


Thus may all other ares of direction to the east angle be calculated when the planct is below the earth. Werc I to calculate the ascendant to the semiquartile of 4 , I should add in the same manner lalf his semi-nocturnal are ; and if to the eonjunction, the whole of his scmi-nocturnal are.

Take a fer examples of a planct abore the earth.
Example 5, th.-Direct the asc. to the sextile of the sun.
The Sun's R. A. in page 23 , was found to be S4.57'. and his semi-diurnal are, 125. 39.

When the sum is on the cusp of the clerenth, he will be in sextile aspect to the ascendant ; then,

From the sun's R. Ase. . . . . 84. 57
Subtract $\frac{1}{3}$ of his semi-arc. . . . 41. 53

Example Gith.-Direct the ascendant to the quartile of the sum: that is, bring it to the nidheaven; thus,

From the sun's right ase. $\dot{C}$. . 84. 57
Substract the R. A. of the M. C. . . 41. 57

$$
\text { Asc. to } \square \text { of } \odot \text { Arc. } \Rightarrow 43.0
$$

Example Thi.-Direet the ase to the trine of the $\overline{-}$.
The sum will form a trine with the ascendant when it arrives on the eusp of the ninth house; then,

If the nseendant was directed to the sesquigundrate of the smi, half the sm": somidiumal are, should be added to his right nace. instead of $\frac{3}{}$, and if to the opposition the whole semidimrnal are.

These cramples will be suflicient to give the student a dear idea of the important directions to the east angle. Those to the mid hearen are calculated in the same maner, in which he will tinel no difficulty, if he attends to the rules and preceding instractions-one or two examples will render them timmiliar.

Example lat. Direct the mid-heaven to the trine of Jupiter.

Here dupiter must Jee bronght to the eusp of the Gith house, where he will form the trine thas:-

$$
\begin{aligned}
& \text { Right lise of } \because-323.7 \\
& 3 \text { of } 1 \text { :semi-noeturnal are } 71.0 \\
& \text { 1919. } 7
\end{aligned}
$$

Subtraet the R. A. of the J. C. $2=1$. 57

$$
\text { M. C. to } \Delta \text { of } \because \text { Are }=27 . \quad 10 .
$$

The sesquiguadrate is eniculated in the same mamer as that to the ascemdant, aud the II C to lis opposition by subtracting the right ase. of the th house from I's right nsecusion.

Example ?nd. Direet the M. C. to the semiquartile of the sm-whiels falls in the mid. of the sth house.

$$
\begin{array}{r}
\text { Right Aseension of the } \odot= \\
+\frac{1}{2} \odot \text { 's semi-diurnal are }-\frac{84.57 .}{147.47 .}
\end{array}
$$

Subtract the right ase. of the M. C. 41.57.

$$
\text { M. C. to the semiquartile of } \odot 105.50
$$

The M.C. to $\delta$ of the sun is ealeulated in the same way as the aseendant to his quartile was. To direet the M. C. to the sextile of the sum, I should add $\frac{2}{3}$ of his semidiurnal are to his right ascension and proeced as before. These examples, with those in the two following natirities, camot fail to make the student perfeet in this portion of elementary philosophy.

To direct the asecndant, or medium eœli to the parallel of any eclestial body.

Rule. Tlat place must be found where the sun acquires the declination of the star to whose parallel the angles are to be direeted. Then suppose the sun posited in that place, and direet the given angle as if to his eonjunction, aeeording to the precepts before given.

This problem has escaperl the attention of most former authors, but is by some thought to be a most porerful aspect; equal in erery respect to the eonjunetion. It is nothing more than supposing the sum placed on the eusp of the aseendant or medium cocli, (neither haring any latitude, and always meeting parallels in the same part of the heavens as the sun) and dirceting that sun to the parallel of the given planet, not in the zodiae but in mundo, becanse the augles ean be dirceted in mundo ouly.

Example lst. Direet the medium eocli to a parallel of mereury's deelination in the figure Page 15 .

By prohlem 4th, ̧'s dee was found to be 17.11.
Then by problem 2nd find where the sun acquires the the same declination thus:

| As sine of 23.28. | 9.60012 |
| :--- | ---: |
| Is to sine of $̧$ dee. 17.11 | $9.470-4.5$ |
| So is radius | 10.00000 |

To sine of 47.54. $=\mathrm{S} 17.51 .=9.87033$

Then for the sum's right ase. in that point.
As posine dectly. 17. 11 .

$$
\begin{aligned}
& 9.98017^{-1} \mathrm{~S} \\
& 9.826352 \\
& 10.00000
\end{aligned}
$$

Is to pos. long. 47. i 4 .
So is radius
To cosime ©.'s right ase. $45.26 .=9.84618$
'Then from sum's right ase. 45. 26.

Subtract R. A. of mid-hearen
41. 5\%.
M. C. to parallel of $\$$ are
3. 29.

Example "nd. Direct the aspendant to a parallel of the moon's declination 3. :33. N. in the sam figure.


1: to sime of 3 's dee. 3.33. 8.3 9183
So is radius
10.00000

To sine of ヶ. .л. - m 21. 3. 9.19171
Then for the sum's right ase. there.
Ascou. dec. 3. 3.3. 9.9991\%

Sois raclius 10.00000

The asem-ional diff. is thens saldentated.
To tanc. of latitude in. 26.10 .12973
add tangent of der. 3. 33. S.i926it
Sine of 4. 41. ©'s A. 1) - 8.9123!
$90 .-4.41 .=5.5 .19$, the $\odot$ semi-noeturnal are.
To the sm's right ase. in mi 21.3. = 1;1. 46.
add his semi-nocturnal are
8.5. 19.
$0.5 \% .5$.
Subtract the R. A. of the Imum ecoli $2: 2]$. 57.
Remains the are of direction req ${ }^{\text {d. }}=\underline{3 . i} \quad \mathrm{n}$

These two examples will be sufficient to enable the student to make any similar calculations; several of whieh will be found in the nativity of the author.

## OF MUNDANE DIRECTIONS,

## FORMED BY THE STARS WITH EACH OTHER.

These directions suppose the significator to remain fixed in the heavens-the promittor moving conversely (apparently caused by the diurnal motion of the earth on its orrn axis) until it forms the various aspects; conscquently all aspects are measured by the proportions of the semi-are of the applying planet. Thus suppose a planet posited on the cusp of the seventh honse, and another in the tenth, the planet in the tenth must move converscly till it arrives on its cusp, when a quartile aspect will be formed : but should neither planet be placed on the cusp of any house, the proportions on the are of direction must be found as follows.

To direct a significator to any mundanc aspect.
Rule 1 st. The planet which forms the aspect hy moving eonsersely must be directed whether it be significator or promittor-when the promittor is dirceted the aspect is direct, but when the significator it is called eonverse.

2nd. Observe the star which is to remain fixed-that is to whose place or aspect the direction is to be made, and take its distanee from the cusp, cither of the preceding or sueceeding house; find also the distance of the star to be directed (viz. that which mores conversely) from the cusp of that house which forms the required configuration with the cusp of the other house from whenee the first distance was taken, and eall this last the primary distance.

3rd. Then say, as the horary time of the planet to whose configuration the other is to be directed, is to its distance from the eusp of the house whence its distance is taken, so is the homy time of the planet to be directed, to its secouclary distance.

If the sccondary distance be on the same side of the cusp from whence the primary was taken, (that is, if the planct will be on the same side of the cusp when the aspeet is complete,) subtract the one from the other ; otherwise, if on diffcrent sides add them, their sum or difference will be the true celestial are required.

The secondary distance is obtaned by taking the proportions arising from the whole semi-ares, but the horary times are used as being casier.

Example lst. In the exemplary horoseope, let it be required to find the are of dircetion of the sun to the mundane quartile of the moon.

The $\mathrm{J}^{\prime}$ : latitude is 2. $\operatorname{in}$. N . and declination 3. IS. N.
The 2 forms the aspect by moving conversely, and is, therefore, the planet to be directed.

Thae R. $\lambda$. of the smi is

> ㄴ. i\%.

- $\frac{1}{3}$ of Es semi-diurnal are

11. i3.
12. 13. 

Subtmet R. L. of M. C.
41. i\%.

The és distance from 11 th housc $-1 . \quad 7$.

Tahe the diatance of the $D$ from the End house thus: Pint find her right ase. - 170. 13.
A- eos. D dee. 3. 2ム. 9.990295
If to cos. ) long. sht.of $\bumpeq \because$. fi. 9.99970 (
Su in cos. 3 lat. $\quad 2.82 . \quad 9.9991 .50$
9.999164
$9.909 \div 9$

|  |  |  |
| :--- | :--- | :--- |
| 9.909059 | 180. | 0. |

'Tung. lat. $\quad$ i3. $26 .-10.13973$ 17!. 13.
Tang. 3 dee. 3-33.-8. 70260

$90-1 . \operatorname{RA}=8 . i$. $12 .=$ the $D^{\prime}$ s semi-mocturnal are.
12. A. $)$
$+\frac{2}{3}$ ) scmi-are
179. 13.
i6. 4N.
236.1.

Sultract R. A. of I. C. $2=21$. . 7 .
D's distance from Ind house $=14 . \quad 1$.
$\odot$ H. T. $\odot$ dist. § H. T.
As $20.57: 1.7:: 14.12: 0.46$. the $D$ secy. distance.
Primary distance of the $D$ from the 2 nd $=14 . \quad 4$
Secondary distance to be subtracted $\pm 6$
Remains the arc of direction $\odot \square D-13.18$
Example 2nd. Direct the sun to a sextile of the 3 .
The sun's distance from the eleventh is 1.7
Then find the distance of the 3 from the ascendant, because it forms the sextile to the cleventh housc.

Right ascension of the $D=179.13$

+ D's sem. noct. arc s5. 12
26.1. 25
— the R.A. of the 4th house 221. 57
$=D$ 's distance from the asc. 12. 28
$\odot ' s$ II. T, $\odot$ dist. D's II. T.
Thus, as $20.57 .: 1.7 .:: 14.12 .: 0.46$. D's seeondary distance.
The moon's primary distance from the asc. is 42.28
From which subtract her secy. distance, beeause the sun's primary distance is on the east side of the lith, consequently the $D$ is on the east of the ase. when the aspeet is complete

Example 3rd. Required the are of direction of the sun to the trine of the moon.

Here the sum, not the moon, must more eonversely to complete the aspect; consequently the sun is the orb to be directed.

The distance of the $D$ from the 2 nd house is 14.4 .
Then find the sun's distance from the 10th house, because it forms a trine with the second, thens:-

Right ascension of the sun . . . . . 84. 37

- Right asc. of the mid-heaven . . . 41. 5t

The $\odot$ 's primary distance from the M. C. $\overline{43 .-0}$

$$
\begin{aligned}
& 0 \text { s } 11 . \mathrm{T} .2 \text { s list. © } 11 . \mathrm{T} . \\
& \text { Sar, as } 14.12: 14.4:: 20.57: 20.45=\odot \text { scey. }
\end{aligned}
$$

aistance.

The sun's primary distanee from the loth honse is 43.0
Subtract his secy. distance, because he does not arrise at the cusp of the II. C. before the direction is complete

S: the sum is signifieator, the first two directions are dirict, becomace the promittors move coisersely; bit the thred is comurse, becanse the smin forms the aspect by mosing embersely.

## OF MUNOANE PSRULLEJS.

Itmolane parallels are formed when two plancts are egui-distant from the angles of a tigute, and are, like all other mmome aspecte measined by the semi-ares of the planets: the a star on the ensp of the second lonse would be in mandame paratlel to another on the ensp of the sixth, becaume the y are both two homses distant from the fourth; a star on the cusp of the ninth is in the same parallel with another on the cu-p of the ele wenth, becanse they are equidivent from the mid-heaven, we.
'To direet a signifieator to any mumdane parallel, direct or comserse.

Rule l-t. Find the distance of both the signifieator and promittor from the cusp of the angle on which the parallel is formed, and eall that distamer of the star to be direeted to the other's parallel, (viz. the star which mores eombersely) the primary distance.
?nd. Is the horary time of the star, to whose parallel the other is to be directed, is to its distance from the said angle, so is the horary time of the star to be directed to its secomalary distance.

3rd. If the primary and secondary distance are on different sides of the angle, add them. If on the same side, subtract one from the other, the sum or remainder is the true are of direction.

Example 1st. In the figure before referred to I would direct the moon to the parallel of Jupiter by direet motion, (Here Jupiter moves conversely until a parallel is formed with the moon on the cusp of the Imum Coli.)
— R. Asc. of the moon . . . . . . 179. 13
Right ase. of the fourth house . . . . $=21.57$
Distance of the $D$ from the fourth house,$=42.44$
Right ascension of Jupiter . . . . . 323. I
Right ascension of the lower heaven . , 221. 5
Primary distance of $4=101$. 10

D's H.T. D's dist. fr. Ath H's II. T.
As 14. 12. : 42. 44.:: 18. 30 . : $55.40=2$ 's secondary distance.

Primary distance of 24 from the north angle 101 . 10
Secondary distance, (i.e. the distanee he must be when the parallel is formed)
55. 40

$$
\text { Arc . . . 4.5. } 30
$$

Example 2nd. Let us direct the moon to the mundane parallel of Jupiter (eonverse motion.)

Here the moon moves conversely until she forms a parallel with Jupiter's place in the figure from the same angle as before. Their distances are found above.

2's H. T. 世's dist. D's H.T.
As 18. 30.: 101. 10.: : 14. 12. : 77. 39. $=\mathrm{D}$ 's second. distance from the Imum Coli on the same side of its cusp.

The moon's sccondary distance . . 77. 39
Primary distance
42. 4.4

Arc of direction
34. 55

Example 3rd. Direct the smin to the mundane parallel of Mercury, direct motion.

Right asceusion of the sum . . . . 84. 57
Right ascension of the mid-licaven . 41. 37
The © $\bigodot$ distance from its cusp . 43. 0
Right ascension of Mercury . . . 62. *
Right nscension of M. C. . . . . 4. . 37
Primary distance of $\begin{aligned} & \text { Y } \\ & \text { from the tenth }=24.11\end{aligned}$
'Tangent of the latitule . 33.26 .10 .12973
'Tangent of s's dectination 17. 11. 9.19029
Sine of Y's.I.D. muler the pole of Birth $92.38 .=9$. .i2002
$90+24.34 .=111.34 .-$ Y's semi-linrmal are $\div 6=$ 1!. (i. the horary time of Mercury.
E's II. T. だ: dist. Y's II. T.
 condary distance, or the distance lie must be ou the contrars side of the medimen coli when the parallel is complete. To direct the sme consersely to the mumdane parallel of Maremry, proceed as in the second example.

These are all the waricty of cases that can well happen, so that hy a careful attention to their solutions the young student will never bee at a low when calenlating these important Problems. We slall now gite the rules to calculate Rapt l'arallels, which, as "Raphacl" ulserves, are " ares of extruordinary strength and power, exen when life and death are concerucel."
N.J. Parnllecs, both zodianeal and mmedanc, are (like the ronjunction) good or eril, according as the promitor is a benevolent or malign star.

## Problem to Calculate Rapt Parallels.

Rapt Parallels are the joint appronel of two stars conversely to the medinm cocli or fourth house, from which angles they are always formed by right aseension.

Rule 1st. Add their semi-ares together (diurnal if the parallel is formed above, or nocturnal if below the carth).

2nd. Find the difference between their right ascensions.
3rd. Find the distance of the star that applies to the angle when the parallel is eompletc, (i.e. of that star which comes last to the cusp of the given angle) and call it the primary distance.

4 th. As the sum of their semi-ares is to the semi-are of the planct applying to the angle, so is the difference of their right ascensions to the secoudary distance.
5th. If both distances are on the same side of the angle, subtract the one from the other; if otherwise, add them, the sum or remainder will be the are of direetion.

Example.-In the former figure of birth, required the are of direction of the sun to the rapt parallel of Mercury.

The semi-diurnal are of the sun 193. 39
To + the semi-are of mercury . 11.4. 34

$$
\operatorname{Sum}=\underline{210.17}
$$

Right ascension of the sun . . B-t. 37
Right ascension of Mercury - 62. 8
Difference between R. A. of $\odot$ and $¥=22$. 19
Right aseension of the sun . . 84. 57
Right aseension of the medium eoli 41. 37
Dist. of $\odot$, the applying planet, fm. M.C. $=43 . \quad 0$ primary
Sum of ares $\odot$ 's arc Diff. of R. A.'s.
As $240.17 .: 123.39 .:: 22.49 .: 11.56 .=$ secoudary distanee of the $\odot$ from the medium coll on the same side.

Primary distance 43.0
Secondary distance 11. 50
Are of direetion $=31.4$
To direct the luminaries to their own ravs in mundo.Make the proportional part of their semi-ares the are of
dicection. Thus to direct the sum to his own quartile in the present figure: -

The sum's semi-diurnal are 2) 12.3. 39

$$
\text { Are of direction }=62.58
$$

If the direction falls in two difierent semi ares, that is, diurual aud nocturnal (as the * or $\square$ would in the present inetanee) the are of dirt etion must be culenlated as in other mundau aquet. The semi-sextile, sestile, quintile. quartile, trine, sesqumpadrate, semi-quartile, biquintile, and opposition, are the only aqpects which, together with the conjunction, modern astrolegers use-besides the parallels in the zonlas and mumblo-but for my part, 1 have no high opinion of the semion xtile or bignintile, whose eflects, if they have any (lleets, are very tritling. In forming any of thene contigurations from any other contiguration, the di-tanere muta all be meaned by the semin-ate of the star directed (ar that whel moves conversely). Thus, to find the seotpuifualrate from the trine, add or subtract (according as the appect is dester or sinister) 1 -sixth of the armi-are. lecemere the serquicpualrate is 1 -sixth more than the $\Delta$; to tind it from the 8 , tahe $\frac{1}{2}$ of the semi-are in the same mamer, beenuse the sespuicpuadrate is is of the comiare les than the oppoition. Tlus the $*$ is $\mathfrak{l}^{2}$ of the semi-are low than the ghartike, and the quintile is 1 -fifth of $\}$ of the emi-are mere than the sestile, or 1 -fifth of the semi-iare lese than the quartile. The semi-quartile is luif the semi-are low than the chartile, or 1 -sixth less tham the sextile. The limuintile is 2 -tifthe of the sextile of a semi-are more than the trine, aul 3 -tifthe of the same sextile (or ${ }_{3}^{2}$ of the semi-are) less than the opposition-the semi-
 which proportions any one mundane aspect may be casily calculated from another-the student bring eareful that the aspect shall only inelude part of the same semi-ire in which it is posited, and not to confound the dexter with the sinister aspects. A few examples will make these instructions faniline.

Example lst. Firom the asceudant to the guartile of the sun, in page 4N, I wonld find the $*$ nad $\Delta$.

Are of direction for the quartile . . . . . 43. 0
Subtraet $\frac{1}{3}$ of the $\odot$ 's semi-are, because the $*$ is formed before the

$$
\text { Are of direction for the } *=1.7
$$

To the quartile . . 43. (1)
Add $\frac{1}{3}$ of the $\odot^{\prime}$ s semi-are, because the $\Delta$ is $\frac{1}{3}$
more than the $\square$ and is formed after the $\square$. 41. is
Are of direction of the Asc. to $\Delta$ of $\odot 8.4 .53$

Again, from the ascendant to the quartile of the sun, required the sesquiquadrate.
Arc for the
Add $\frac{1}{2} \odot$ 's semi-arc, hecause the sesquiquadrate is $\frac{1}{2}$ the scmi-arc more than the $\square$, and is formed after the quartile

$$
\text { Are }=10.5 .00
$$

From the arc of direction of the sun to the mundanc quartile of the moon to caleulate the sesquiquadrate,

Arc of direction $\odot \square$ D 13.18
Add $\frac{1}{3}$ of the D's semi-arc 28. 2-1

$$
\text { Are } \odot * D=41.42
$$

Which eorresponds with the solution in page 53, Ex. ’ud.
From the arc of dircetion $\odot$ to $\Delta D$, Example the 3rd, in the same page, required the are to the sesquiquadrate.

Arc of direction $\odot \Delta$ D . . 22. 15
Add 1-sixth of the ©'s semi-are 20.57
Are $\odot$ to the sesquiquadrate of the $D$ eon. $=43.12$
'The proportions of the semi-ares are added in the above cxamples, because the required aspeets are formed after the given oncs.

These rules and examples are very easy, and by being well rersed in them the practitioner will soon be able to calculate them with the greatest espedition and aceurney. We shall now proced to give the only true methods of rectifiention, which will complete all the rules necessary to be noderstood in the ealculation of any Nativity. Besides the following, other theories have been laid town as the Trutine of Hermes, Inimoder of P'olemy, \&e., sll of which are "qually futile and croncous: but the following will tand the test of experience in all cases, and are the anly mothode to be depended upon.

## Prerepts to rectify the Natieity of an lufant.

The exaet moment of birth should be observed by a grod time-picer. 'The-n, as soon as possible, $n$ solar observation mun be made cither before or atter noon, and the tries time wall be ohtained as follows:

Goren the latitude of the plate, the wmis deelination and altitude to find the hour of the day.


In the abore dingram and in the oblique angled spherical triangle 1) $\% \lambda$ are given $Z N=$ the co-latitude, 1$) \sum$ the eo-dee., and D) \% the complement of the sun's nltitude, to find the angle $Z X V D$ the time from noon, when the observation was made.

Rule.-From half the sum of the co-latitude, co-declination, and co-altitude, subtract the complement of the altitude and note the half sum and remainder. Then add together the secants of the latitude and declination, (rejecting the indices,) with the sines of the half sum and remainder; half the sum of the four logarithms is the cosine of half the hour angle; whieh, doubled, will be the truc time from noon when the obserration was made, from whence the watch may be corrected.

## To rectify the Nativity of Personal Accidents.

"When angles are significators they will mect with a number of aspects which, when compared together with the time of accidents, will be so cxactly alike in error, that the truc time cannot possibly be mistaken." - W"ilson.

Rnles.-Obtain the exact times of as many personal accidents as possible, and convert the years and days of their occurrence into degrecs and minntes of the equator, by the measure of time, termed Naibol's, (which is one year and five days for cerery degrec) sec page $\because 3 . \%$.

Then inspect the nativity, and obserre what directional rays to the ascendant or medium coeli mar be the most probable cause of each accident, (according to the rules given for that purpose in the lattcr part of the present work). Calculate the arc of dircetion to the estimate time of birth, which may be termed the falsc arc. The difference between this and the truc arc found as above, will be the difference between the estimate and the true time of birth, in degrecs and minutes of the equator, which may be turned into time by taking the proportion of 15 degrecs to an hour.

Full cxamples will be found in the following nativities, which will render this most cxeellent method exceedingly easy and practicable.

## Rules and Instructions to Calculate any Nativity.

After the nativity is truly rectificd, a speculum must be constructed containing ealculations of the right ascensions,
semi ares, poles, \&e. of the planets at birth, the exact form of which may be secn in the two following ones.

Afterwards draw out another speculm, cxhibiting at one vies the zodiacal aspects of every planet to the sum and moon, according to the order in which they meet those aspects, that cach may be calculated in regular succossion. These specula will save the student momel time and labour, cnabling him to bing out all the directions, in any uativity, with the greatest case and pleasure.

Next direct the ascembant and mid-heaven to all the the aspects of each planet separately, calculating one momdane are of direetion from mother, hy the rules given in a former part of this wark, by which method sixty or sesenty directions to the angles may be brought up without the least difticulty.

Then proced to calculate the zoliaral aspects to the lummarics, acrorling to their order in the spuentunt, after which the mamdane rapuets to the sum and moon may be calculated, alonas working all those fombed bs one planet. before the aspecta of any other plane are pertormed, beranse one mundane tirection may so casily be proportioned from another.

After all the directions are thus brought mp, they must be collecterd tugether in a table constmeted for that purpose, containing, firt, the aspets themselves, then the ares of direction, null lastly, the age of the natise at which they opreate, cenated by Nabol's measure of time, a table of which is given, page 2et. 181

Then nothiag remains but to grive judguent on ench direction, and the untivity is complete.
N. B. When the place of birth is not on the meridian of London, the planets' places must be eguated for the meridian of the matisity.

Thus, convert the longitude into time, and if the meridian of the place is enst of London, add it to the true time of birtl, but if west subtract; the sum or remainder will be the time on the meridian of Lonton, to which 'quate the plancte' places from the Ephemeris for the yone of the nativity.

The , Vativity of a person now lising, with every direction calculated in full.


Planets' Latitudes.


## The C'onstruction of the :ipeculum.

Fust. Calculation of the planets' declinations.
Hersehell's declination is thus found.*
As ratlius:
10.00010

Is to tang. 르․ .2: $\quad 9.637(61$
So is sime 1 long. Sl. 14. 9.994!0

$$
\text { To tang. of } 1 \text { st }>03 . \quad 13 .=9.632 .31
$$


Ac cosinc of lst $>$ 23. 13. 9.96332.


To sine of H dee $23.15 .-9 . .39720$
Naturn's Declimation.
As radius . . . . . . 10.00000
Is to tange of $\because 3.2 \mathrm{~s}$. is 9.63761 is
$S_{0}$ is sinc of h's long. 64. 1s. 9.95176
To tang of lat angle - 21.22. - 0.5923;
Њ's lat. lat angle.

As the cosine of the lst angle 21.20 .09 .96907
1s to cosinc of 2 d angle . . $70.27 .-9.52492$
So is cosine (obliq. of reliptic) 23. 28. - 9.969.31 $4 V^{\prime} i^{8}$ res
!. 15, 43

- 9.960007 antin

To the sine of $5 \times \mathrm{s}$ declination 19.17. $=9.51636$

- The student would do well to eompare these and all the following culeulations with the preceding rules and diagrans; fur by doing this he will not only see the reason of every operation, but be able to demonstrate them in the clearest nammer.

Jupiter's Declination.
As radius . . . . . . 10.00000 fteo art thete
Is to tang. 23.28. . . . 9.63761

So is sine $\nVdash$ long. 24. 43. 9.62131
To tang. of the lst angle $10.17 .=9.25892$

As cosinc of the lst angle $10.17 .9 .99297^{\prime}$
Is to cosinc of $2 d$ angle 80.59 .

| $\begin{aligned} & 9.99297 \\ & 9.19513^{\prime} \text { \& } 2 \cdot 3 \\ & 9.96251: \text { inir } \end{aligned}$ |  |
| :---: | :---: |
|  |  |
| 9.1.9764 |  |
| 9.99:97 | ar |
|  | these |

To the sine of $\Psi$ 's declination S. $24 .=9.16467$

The 2d angle was obtaincel thus:$90 .+1.16 .=91.16 .-10.17 .=80.59$. the 2 nd angle.

Mars' Declination.
As radius . . . . . . 10.00000
Is to tang. of 23.28.
So is sine ot's long. 23. $54 . \quad 9.60761$
To tang. of lst angle 9.59. $=9.24522$
90. - $0.53 .=89.7 .-9.59 .=79.8$. the 2 d angle.

As cosine of 1st angle 9. 59. 9.99337/

So is cosine of 23.28.

| 9.96251 |
| ---: |
| 9.23788 |
| 29.99337 |

To the sine of $\delta$ 's declination $=10.6 .=9.24451$

The Sun's declination.
As radius . . . . . . 10.00000
Is to sine of $\mathcal{C}$ s long. 79. 14. 9.9902! for here -
So is sine of 23 . 28. . . 9.60412
To the sine of $\odot$ 's declination $23.9 .=9.992-11$

Venus' Declination.
As radius . . . . . . 10.000000
Is to tang. 23.2 Q. . . . ! 6.63761
$S_{0}$ is sine of $q$ 's long. 61. 34. 9.9.4.417 AJJ these
To tang. of 1 st angle - 20. $34=9 . .28178$
90. - 1. 26. - $-5.31 .-20.51 .-67.40$, the end angle.

Is to cosine $2 d$ angle $6 \pi^{\circ} .40$. 9.i79782 Adj $2<3$


$$
\begin{aligned}
& 9 . i 12091 f_{u} f t_{2}+6= \\
& 9.970-442 \text { Tram } 1 .
\end{aligned}
$$

To the sine of 9 's declination $21 . .33 .=9.57185$
Mercury's Declination.
As radius . . . . . 10.00000
Is to tang. of 23.28.


To tang. lIst angle 23. 19. $-=9.631 .57$
$90+2.37=92.37-23.19 . \quad 69.18$. the 2 nd angle.
As cosine of lat angle $\because 33.19 .9 .9133001$

So is cosine of 23.28.
951057 d jubizact
9.963002 2 from 1

To the sine of $Y$ 's declination 20.40. $=9.5 .1787$

The Moon's Declination.
As radius . . . . . . 10.00000
Is to tang. of 23.28. . 9.63761 of od the sex So is sine D's long. 41.52. $\quad 9.82439$

To tang. of 1st angle 16. 10. $=9.46200$
$90 .+1.46 .=91.46 .-16.10=75.36$, the 2 nd angle. As cosine of pst angle 16. 10. $9.9824 \mathrm{~S}^{\prime}$
Is to cosine of ad angle 75.36. 9.395662 tu $2 \nless 3$ So is cosine of 23.28 . . . 9.962513

$$
\begin{aligned}
& 9.358171 \text { outrun } \\
& 9.982482 \text { prom } 1
\end{aligned}
$$

To the sine of $D$ 's declination 13. 44. $=9.37 .569$
The name of the planet's declinations may be astertanned by a reference to the rule in Problem fth, and to the Speculum.
Next find the Right Ascensions of the Planets, and first
The Right Ascension of Herschel.
As cosine of H's declination 2.3.18. . $9.9630{ }^{\prime}$ /
Is to cosine In long. from $r \rightarrow 81.14 . \quad 9.183022$ A $+2 J_{2}$ So is cosine of his latitude 0.8. . . 9.999993 and 3

$$
\begin{aligned}
& 9.183011 \text { subtimat } \\
& 9.963052 \mathrm{zpman} /
\end{aligned}
$$

To the cosine of S's R. A. 80. 27. $=9.21996$
The Right Ascension of Saturn.
As cosine of $h$ 's declination 19. 17. 9.97-92 ${ }^{\prime}$
Is to cosine of his long. past $\bumpeq 64.18 .9 .637152 \mathrm{Ad}_{2} 1$
So is cosine of his latitude 1. 48. . . 9.999793

To cos. of $62.40 .+180 .=242.40$. r. $_{2}$ 's R.A. $=9.66202$

The Right Ascension of Jupiter.
As cosine of $21 \times s$ declination 8.24 . . 0.99531
Is to cosine of his long. past $\bumpeq 24.43$. 9.95:ン7
So is cosine of $\because `$ latitude 1.16 . . !.990) 9
9.9 .516
9.99 .331

To cos of $23.22+180 .=203.22 .2$ R. $1=9.00280$

The Right Asecusion of Mars.
Is cosinc of $\delta^{\circ} \mathrm{s}$ declination 10 . (i. , 9.99329
Is to cosine of his hang. from $r 23 . \operatorname{it}$. 9.96107
So is cosine of $\delta^{\prime}$ 's latiturde 0. $53 . \quad$. 9.99995

| 9.9610 .2 |
| ---: |
| 9.99322 |


The Sun's Right Aseension.
As cosine of $\odot$ s declination $23.3 . \quad$. 9.96392
Is to cosine of Lis long. from $r \mathbf{r} 9.14 .9 .97140$
So is radius . . . . . . . . 10.00000


The lieght Iscension of Venus.
As cosinc of 9 's declination 91.53 . 9.9675
Is to cosine of her long. from r 61. 31. 9.67ラ73 So is cosinc of 9 's latitude 1. 26. , 9.99986
9.677 .59
0.96752

To cos. of $59.8 .-$ from $300 .=300.32 . q$ 's R. A. $=9.710017$

Mcreury＇s Right Ascension．
As cosine of
Is to cosine of lis long．from $r$ 83．14． 9.07124
So is cosine of $\not \subset$＇s latitude 2．37．． 9.99955
9．07079
0.97111

Tocos．of $82.47 .-$ from $360 .=277.13$ ．$̧$＇s R．A．$=9.09968$
The Moon＇s Right Ascension．
As cosine of the D＇s declimation．13．H．$\quad 9.987+0$ Is to cosine of her long．past $\bumpeq 41.52 . \quad 9.97198$ So is cosine of $D$＇s latitude ．1．46． 9.99979

9．ぶファテ
9．98740
＇Tocosine of 41．31．$+180 .-221.31$. D＇s R．A．$=0.87437$
The ascensional differenecs of all the planets under the pole of birth（the latitude of birth），must now be caleulated． Thus for

The Ascensional Difference of Herschell．
To the tangent of the latitude $53.27 . \quad 10.13000$ Add the tangent of Herschell dec．23．18． 9.63414

$$
=\text { A. D. of Herschell . . . } 35.31 .=9.76+14
$$

Saturn＇s Ascensional Differcnce．
Tangent of the latitude ．．53．27． 10.13000 Tangent of 5 ＇s declination ．19．17． $9.5+390$

Sinc of h ＇s asc．diff．．．．28．10．$=9.6 / 390$
Jupiter＇s Ascensional Difference．
Tangent of the latitude ．．53．27． 10.13000
Taugent of 2 ＇s declination－8．24． 8.16928
Sine of 21 ＇s ase．diff．．．．11． $30=9.29928$

The Ascensional Difference of Mars.

| Tangent of the latitule | 33. 27. 10.13000 |
| :---: | :---: |
| Tangent of ${ }^{\text {d }}$ 's declination | 10. 6. 9.25073 |
| Sine of đ's asc. ditl'. | 13. $51 .=9.3800^{-3}$ |

The Suns Lecensional Difference.


The Asecmsional Dillerence of Venus.

| 'Tangent of the latitude | 83. 27 | 10.1300010 |
| :---: | :---: | :---: |
| Tangent of $¢{ }^{\circ} \mathrm{s}$ dectination | 21, i3 | 9.60386 |
| Since of $¢^{\prime}$ : asc. diff. | 32. 48 | 9.73386 |

Mercury': Ascensional Difterence.

| 'Taugent of the latitude | i3. 27.10 .13000 |
| :---: | :---: |
| 'Tangent of y ${ }^{\text {a }}$ S declimation | 30. 10. ! ! .i-6.i\% |
| Silte of J's ance dift. | 30. 33. - 9.7 |

The Moon' , Avensional bifl renee.

| Tamgent ot the latitute | 833. 27.10 .130001 |
| :---: | :---: |
| 'rangent of $)^{\prime}$ : deelination | 13. 11. g.simins |
| Sine of D's asc. difl. | 19.1.i- 9.5 |

The semidiurual and seminoctumal ares of all the planets must next le asecrained, by Prohlems 7 th and sth.

Thus find the semiares of Naturn.

$$
90 .
$$

- $\mathrm{I}^{\prime 2}$ asc. diff. because his 2 Cr .10 dechation is south
$=$ h's semidiurual are $=61 . \sin$
Add insteal of sultracting
the $A$. D. of hand we f
shall have his seminoe

Herschell's Semiarcs.
90. 0

Subtract H's A. D. because his declination is north 35.31
The remainder is 1 's seminocturnal are . . $=54.29$
Add his A. D. to 90 . the sum will be his scmidiurnal arc . . . . . . . . . . . $=125.31$

Jupitcr's Scmiares. 90. 0

Subtract 4 's A. D. because he has south declination 11. 30
The remainder is 2 's semidinrnal are . . . $=78.30$
Added, we shall have his seminocturual are . - 101.30
The Scmiares of Mars.
Subtract $\delta$ 's A. D. because his dec. is south also 13. 54
The semidiurnal arc of $\delta$ is . . . . . $=76.6$
Added, as in the last case, or lis semidiurnal are subtracted from $180^{\circ}$ the seninocturnal are will be found to be 103. 54

The Sun's Semiares.
$90+35=125$. the sun's seminocturnal arc.
$90-35=55$. his scmidimmal are, for the same reason as beforc.
The Scmiares of Venus.
$90-32.48=57.12$. the semidiurnal are of Venus. $90+32.48=122.48$. her seminocturnal are.

Mercury's Scmiarcs.
$90-30.35=59.25$. Mercury's scmidiurnal arc. $90+30.35=120.35$. Mcreury's seminocturnal are. The Moon's Scmiares.
$90-19.15=70.4 \%$ the $D$ 's semidiurnal arc. $90+19.15=109.15$. her seminocturnal arc.

The diurnal horary times of cach planct, as they are fomed in the following speculum, are ascertained by dividing the semidiurnal are by 6 ; and the noturnal horary times, by dividing the seminocturnal ares in the same manner by 6 .

## Calculations of the celestial Pole of each l'lanet. The Pole of Herschell.

Richt asc. of the luman coll . . 96.26 Right asc. of the planct 4 . . . EO. Oi

II's right distance from the 4 th house $=1 . i$. 39
11 sem. noc. arc 11 's R. 11 .
 position.
Diff. of II's circle of pasition mul that of the l. C. 26.6

- 11 's right distance from the th . . . . 15. 59
dice diff. of 11 under his own pole
10.7

Sme of Herochell's ase, ditf. 10. 7. 9.2-466

+ cutangent of his declination 23. 18. 10.36.inco
Tangent of Horschelles pole 22. $11 .=9.610 .0$
Saturn's Pole.
Right ascension of the mid hearen . 276.26
Right asconsion of Eaturn . . . . 2.12. 10
$\underset{\sim}{6}$ 's right distance from the M. C. . . 33.16
!. S. D. arc b R. D.
 sition.
Ditlerence of $h \times s$ cir. of pos. and that of the M.C. $=19 .!$
- h's right distance from the M. C. . . . . 33.46

Asc. diff. of $h$ under his own pole . . . . . 1, 2. 23

> | Sine of Saturn's ase. diff. |
| :--- |
| + cotangent of his declination 15.17. |
| Tougent of Saturn's pole. |
| 10.45609 | $\begin{aligned} & 9.85070\end{aligned}$

## $J u p i t e r ' s$ Pole.

Right ascension of the mid heaven . 276.26

| Right ascension of Jupiter . . . . | 203.22 |
| :--- | :--- | :--- |
| 世's right distance from the M.C. . | 73.4 |

$\underset{\sim}{\mathrm{S}} . \mathrm{D}$ are $\mu$ 's R. D.
As 78. 30. : 90. :: 73. 4. : 83. 46. diff. of circles of position.
Diff. of 24 's circle of position and that of the MI. C. $=83.46$

- 2's right distance from the M. C. . . . . 73. 4

Asc. diff. of 2 under his own pole 10. 42

Sinc of Jupiter's asc. diff. : 10. 42. 9.26873

+ cotangent of य's dcclination 8. 24. 10.83072
Tangent of Jupiter's pole . 51. 30. $=10.09945$

The Polc of Mars.
Right ascension of Mars . . . . . 338.13
Right ascension of the M. C. . . . 276.26
Right dist. of of from the M. C. . . 61.47
t's S. D. arc R. Dist. Diff. of cir. R. Dist.
As 76.6.: 90. : : 61. 47. : 73.4. $-61.47=11.17$. A. D. of $\delta$.

Sinc of Mars' asc. diff. . 11.17. 9.29150 + cotangent of his declination 10. 6. 10.74927

Tangent of Mars' polc . . 42. 19. $=10.04077$
The Sun's Polc.
The Sun's right ascension . . . . 281.43
Right ascension of the medium cocli - 276. 26
Right dist. of the $\odot$ from the M. C. . 5.17

C sem.are R. dist. Diff. of cir. R. dist.
 under lis own pole.
Sine of the Sum’s asc. diff. 3. 92. S.706s:3

+ cotaugent of his declination 23 . 2. 10.371-45
Trugent of the Sun's Pole . $7.52=9.1402 \mathrm{~S}$
The Pole of Venus.


Right distance of Venus from the M. C. 21. 20
$\therefore \therefore$ B. B are R.dist. Diff. of cir. ¢’sh.dist.
 A. I). of 9 under lher own celestial pole.

Sime of the ase dill of Vemus 14. 1. 9.3sifle
$\perp$ cotangent of her declination 21. 53. 10.39014
Tangent of the pole of Venus 31. (;. 9.78032
The lole of Mercury.
Richt aseension of Mercury . . . . 275. 13
Right ascension of the M. C. . . . 276. 26
Right distance of Merenry from the M. C. . $4 \pi$
s's. S. D.are Y'sR.dist. Diff. of cir. Y'sR.D.
 ascensional difference under his own pole.
Sine of Mercury's asc. diff. 0. 24. 7.8 .4393

+ cotangent of hisdeclination 20. 40. $\quad 10.423 .12$
Tingent of Mcreury's pole • 1. 4. 太.26735
The Moon's Pole.
Right ascension of the M. C. . . . 276. 20
Right ascension of the Moon . . . 221.31
Right distance of the Moon from the M. C. 54. 5

D'sS.D.are D'sR.dist. Diff. ofcir. D'sR.dist. As 70.45.: 90.: : 54. 55.: 69.42. - 54. $55 .=14.47$. the Moon's ase. diff. under her own pole.
Sine of the Moon's ase. diff. 14. 47. 9.10682

+ cotangent of her declination 13.44. 10.61192
Tangent of the Moon's pole 46.18. 10.01874
These are all the calculations nccessary to be made previous to bringing up the zodiacal and mundane directions; and when collected together, form a complete speculumso called bceause it is, as it were, a looking glass shewing at oue riew the elcments of the whole natirity. The following is a specimen, which the artist may improve as he pleases.



## Rectification of the Nativity.

The time of this nativity was not exactly known, but was stated as having been between $11 \mathrm{l} .30 \mathrm{~m} . \mathrm{A} .3$. and meridian; and besides several illnesses, the time of marriage was given (viz.-when the native was 24 years and 288 days old), whereby the nativity might be exactly reetified. I erected a figure for the intermediate time, 11 h .45 m . A. m. and looking over the positions of the planets-Venus lady of the seventh—to the mid-hearen, I found to be a most apt direction for marriage, and of course proceeded to reetify by that event thus:-
Twenty-four years and 288 days are equal to $21^{\circ} 20^{\prime}$ (aceording to Naibod's measure of time), whieh is the true are of direction.

The $\odot$ 's right aseension at birth . . 281. 43

- 15 minutes converted into degrees

3. 4.5

Right ascension of the M. C. . . . 277.58
Right aseension of Venus . . . . 300.52

- Right aseension of the mid-heaven 273. 58

False are of direction M. C. $\delta$ 우 . . 29. 54
True are of direction M. C. 6 오 . . 24.26
False are ditto subtract . . . 20. 54
Differenee between the true and false are. 1.32
This differenee, conrerted into time, is 6 minutes, whieh shews that the mative was born at 11 hours 39 min . A. m.-Thus $11 \mathrm{~h} .45 \mathrm{~m} .-6 \mathrm{~m} .=11 \mathrm{~h} .39 \mathrm{~m}$. and
R. A. of M.C. to the false time . . 277.58

Subtraet the above difference . . . 1. 32
Kight ase. of the M.C. at the true time of birth 276.26
When the planets' places are equated to the true time of birth, they will appear as in the preeeding horoseope.

We must now proeeed to ealeulate the ares of direetion
to the ascendant and mid-hearen, according to the rules and instructions beforc given.

First, the Asc. and M. C. to the aspects of Ierschell.
Right ascension of Herschell . . . . . Ro. 27
$+\frac{1}{3}$ of Herschell's scminocturnal are
41. 50
120. 17

Nubtract the R. 1. of the Imum cocli . . 96. 26
Ascendant to $*$ of Mersehell. Are 25.51
For the semiguartile add 1-6th of Ilersehell'ssemiare, beeanes the scmiquarile is l-Gth less than the $*$ and $i$ formed after the sextile
20. 5 5

Ire. to the semiquartile and M. C. to the sesquiqua-

> drate of Ilerweliell. Are
> . 16.46
> $\perp$ 1-6th of Ilerschell's semiare . . . 20. $5 . \%$
> M. C. to $\Delta$ of Mersehell $\quad$ G\%. 41

Ase. and M. C. to Saturn's aspects.
The M. C. to the semiquartile of $b_{2}$ is past-then find the are to the *. R. A. of b
242.40
$\rightarrow{ }^{2}$ of $\mathrm{h}^{\prime}$ : semidiurual arc . . . . 4!. 15

| Subtract the R. A. of the M. C. | 283.55 <br> 270.26 |
| ---: | ---: |
| M. C. to the sextile of S. Are | $\frac{7.27}{7.27}$ |

$+\frac{1}{5}$ of Saturns semidiurnal are to find the $\square$ because the $\square$ is $\frac{1}{3}$ more than the sextile. 20.37

Iscend.to the 8 and M.C. to the quartile of h. Are 2s. To tind the are of direction M. C. to the quintile of h-l-ith of his semiare, becanse the quintile is l-ith less than the quartile, and is formed before the quartile
12. 22
11. C. to the quintile of $\mathbf{1}_{2}$. Arc . 15.42

Are of direction of the M. C. to the quartile of $b$
To find the trine, add $\frac{1}{3}$ of his seminocturnal arc, beeause the trine is formed below the carth, and is $\frac{1}{3}$ of a semiare more than the quartile
39. 23

$$
\text { M. C. to the trine of } \mathrm{b} \text {. Arc } \quad 67.27
$$

Aseendant and M. C. to Jupiter’s Aspeets.
First direet the ascendant to the 8 and the M. C. to the quartile of Jupiter.

Right ascension of Jupiter
203. 22
$+J u p i t e r$ 's scmidiurnal are

Right ascension of the M. C. . . . 276.26
Are of direction ase. to the 8 and M. C. to the quartilc of Jupitcr
Then find the are M. C. to the trine of Jupiter, by adding $\frac{1}{3}$ of Jupiter's seminocturnal are, because the trine is formed below the earth, and is $\frac{1}{3}$ greater than the quartile
M. C. to the trine of Jupiter. Are - 16

Then for the sesquiquadrate $+1-6$ th of the seminocturnal arc, because thescsquiquadrateis $1-6$ th more than the trine, and is formed after it

Ascendant and N.C. to the sesquiquadrate of 21 . Are 56.11
Ascendant and M. C. to the Aspects of Mars.
First, find the arc of direction of the M.C. to the $*$ of $\delta$
by bringing him to the cusp of the 12th, thus-
Right ascension of Mars . . . . 338.13
$-\frac{2}{3}$ of Mars' semidiurnal are . . . 50 . it
297.29

Subtrat R. A. of M. C. . . . . 276.26
M. C. to the $*$ of $\delta^{*}$. Are . 11. 3

From this are find the semiquartile, by anding 1-6th
of $\begin{gathered}\text { 's semidiurnal are, to bring lim to the mid. }\end{gathered}$
of the llth house
Ascendant and M. C. to the semiquartile of 8 . Are 23.44
Then to find the ase. to the $*$ of $\delta,+1$-6ith more
of his semidimenal are, because the $*$ is $1-6$ th greater than the semiquartile 12. 41

Iseendant to the $*$ of $\delta$. Are 36. 25

Right aseension of Mars
33S. 13

- Right aseension of the mid-heaven
276.26
M. C. to the of and Ase to the quartile of of Are 61.47 To direet the Ise. to the quintile of $\delta$, subtract $1-$ ith of his semidiurnal are, beenuse the quintile is $1-5$ th less than the quartile, and is formed before the quartile

$$
\text { Asendant to the quintile of } \delta=46.3 \cdot 1
$$

Ascemdant and mid-heaven to the Aspreets of the Sun. First M. C. to the $\delta$, and at the same time Ase.
to the quartile of the $C$.
Right ascension of the . . . . 281. 43
Right ascension of the M. C'
976. 26

$$
\text { Are }=5.17
$$

Asecndant to the $\square$ of the $\odot$. Are . . 5. 17
To direet it to the $\Delta$ of the $\odot$ add $\frac{1}{3}$ of the $\odot$ 's semidiumal are as the $\Delta$ is $\frac{1}{3}$ greater than the $\square$. 18. 20

Ase. to the $\Delta$ of the $\odot$. Are $=23.37$
Ase. to the sesquiquadrate and M. C. to the semiquartile of the $\odot+1$-6th of the $\odot$ 's semi-are . 9. 10

Ase. to the sesqniquadrate and M. C. of the semiquartile of the $\odot=32.47$
Next find the M. C. to the sextile of the $\odot, b y$ adding
1-Gth more of his semidiurnal are, because the
sextile is 1-Gth greater than the semiquartile and is formed afterwards
M. C. to the sextile of the $\odot$ Are of dircetion 41. 57 $\frac{1}{3}$ of $\odot$ 's semidiurnal are added will bring the $\odot$ to the cusp of the seventh, because the $\square$ is $\frac{1}{3}$ of the semi-are greater than the sextile
M. C. to the $\square$ and Ase. to the 8 of the $\odot$. Are $=60.17$

Find the are of direction of the M. C. to the quintile of the $\odot$ thus - l-5th of his semidiurnal are, beeause the quintile is l-ith less than the quartile . 11. 0
M. S. to the quartile of the $\odot$. Are 49.17

Aseendant and Mid-heaven to the Aspects of Venus.
Are of direction of the aseendant to the $\square$ of 8.24 .26
To find the $\Delta$, add $\frac{1}{3}$ of ''s semidiurnal are, because the $\Delta$ is $\frac{1}{3}$ greater than the $\square$ above the earth
19. 4

Aseendant to the $\Delta$ of 우. Are -13. 30
+1 -6th of the semidiurnal are of 9 to find the sesquiquadrate, beeause it is 1 -Gth of a semiare greater than the $\Delta$

Ase. to the sesquiquadrate and M. C. to the semiquartile of ㄲ.

Are 53. $\because$
Find the are M.C. to the sextile of \$. Thus, add 1-Gth of $¢$ 's semidiurmalare, because the sextile is $1-6$ th of the semiare greater than the semiquartile $\quad 9.32$

$$
\text { M. C. to the sextile 우. Are - 62. } 3 \cdot 1
$$

Aseendant and M. C. to the Aspects of Mereury.
As $Y$ is nearly on the cusp of the 10 th, find the are of direction of the M. C. to the conjunction of $\bigvee$ : thus-

$$
\begin{aligned}
& \text { Right asecusion of Mereury } \\
& \text { - Right ase. of the nid-heaven } .270 .13 \\
& 276.26
\end{aligned}
$$

$$
\text { M. C. to the of and ase. of } \square \text { of } 5 \text {. Auc }=0.47
$$

$$
+\frac{1}{3} \text { of Y's semidiumal are } \quad 19.45
$$

Ase. to the $\Delta$ of 8 . Are - $\because 0.35$
Now brime out the sesquiquadrate to the ascendant
by adding t-fith of $s$ semidinmal are, because
the sequiquadrate is formed after the $\Delta$, and is
l-Gth of the semiare greater than the $\Delta$. . 51
tecenemit to the sesquiquadrate and M. C. to the semiquartile of Y. Are $=30.29$

+ l-bith of 5 's semidiurnal are . . . 9. a )
M. C. to the sextile of Y. Are -10. 23

Find the are ase. to the 8 and 2!. C. to the $\square$ of $\$$,
viz. add $\frac{1}{}$ of his semidiurnal are to the sextile 19.48
Asc. to 8 and M. C. to $\square$ of 乌. Are 60. 11 - 1-ith of 7 's semidiumal are . . . 11.93

$$
\text { M. C. to the quintile of } \$ \text {. Ire } 48 . \text { is }
$$

Medinm Cerli nad Aseendant to the Aspects of the Moon. First II. C. to the - and the Aseendant to the 8 of the $D$. liseht aseension of the $D$. . . . 221. 31

+ the J's semidimmal arc . . . . 70.45

292. 16

Subtract the Right ase. of the $11 . \mathrm{C}$. . 276.26
dre of direction of the ase. to the $=$ of the $3-15.50$ $+\frac{1}{3}$ of the 's seminocturial are, beeause the $\Delta$ is formed under the earth 36. 25

Ascendant to the $\Delta$ of the 3. Are 52.1.

+ 1-Gh of the J's seminocturnal are . . 18.13
M. C. and Ase. to the sesquiquadrate of the ) . Are 70.28

Arc of direction M. C. to the $\square$ of the D 1:. $\overline{3} 0$ From this are find the quintile thus:

- 1-5th of the D's semidiurnal arc, because the quintile is l-5th of the semiarc less than the $\square$ 1.4. !
M. C. to the quintile of the D. Arc 1.41

The Sun to the Zodiacal Parallel of Venus.
The sun it will bc found acquires the dcclination of $¢$ in ho $20^{\circ} 53^{\prime}$. Then for the $\odot$ 's R. A. there.

As cosine of $\odot$ 's dec. 25. 53 . . 9.907 .52
Is to cos. of the long. short of $r 69.79 .55202$
So is radius . . . . . 10.00000
To the cos. of 67.25 - from $300 .=$ 292. 35. the $\odot$ 's R. A. in 9 20. $\$ 3$. 9.58450

Tang. of the $\odot$ 's polc 7.52 . 9.14011

+ tang. of the declination 21.53 - 9.60386
Sinc of the A. D. of the aspect $3.11=8.7 \cdot 4427$
Right ascension of the aspect . . 292. 35
Add the A. D. because the declination
is south . . . . 3. 11
O. A. of the aspect under the $\odot$ 's pole 295.46

0 . A. of the $\odot$ under his own pole 285 . 5
Are of direc. of the $\odot$ to the parallel of $P=10.41$

The Sun to the Zodiacal Parallel of Mercury.

As cosine of $\ngtr$ 's declination 20.40 9.66562
Is to cosinc of the longitude of the
aspect short of $r 62.25$
So is radius

「ocos. of 60. $20-$ from $3606=999.40$ R. A. 9.69451
'langent of the sun's pole 7.52

+ tangent of Y's declination 20.40
Sine of the A. 1 . of the aspect $=2.59=$
$9.140-41$
9.5765 B

Right ascension of the aspect 299. 40
Ascensional difference
2. 59
1). I of the aspect under the $C$ 's pole 302.39


$$
\text { Are of dircetion }=17.34
$$

The Sun to the Zodiaeal larnllel of Saturn. The aspect falls in me 1. - declimation 19.17 S .

$$
360.0
$$

$$
\frac{1 \times s \text { long. } \frac{30-4.0}{56.0}}{0}
$$

As cosine of h's declinntion 19.17 9.97492 1s to cos. of the long. short of $r: 60.09 .74756$ So is radius
10.000000

To cosine of 53.40 - from $360 .=$ $306.20 \mathrm{R} . \mathrm{A} .-9.77264$

Tangent of the sum's pole $7.52 \quad 9.1 \cdot 1041$

+ tangent of h's declination 19.17 9.54390
Sine of $\lambda$. D. of the aspect $2.46 \quad 8.68431$
Right ascension . . 306. 20
Ascensional difference 2. 46
U. A. of the aspeet under the $\odot$ 's pole 309.6
O. A. of the $\odot$ under his own pole $\quad 285.5$

$$
\text { Are of direction - 24. } 1
$$

The sun to the parallel of the moon's declination, which he meets in $\approx=25.24$; declination 13.44 S .

From cosine of the longitude
of the aspect from $r 36.36$
Subtract cos. of D's dec. 13.4-4
9.90462
9.98740

Remains cos. of 34. $14-$ from 360. $=325.44-9.91722$

| Tangent of the sun's pole 7. 52 | 9.14041 |
| :---: | :---: |
| + tangent of the D's declination 13.44 | 9.38308 |
| Sine of the A. D. of the aspect 1.59 | 8.52849 |
| Right asecnsion of the aspect | 325. 44 |
| Ascensional difference | 1. 59 |
| O. A. of the aspect under the $\odot$ 's polc | 327. 43 |
| $O$. A. of the $\odot$ do. | 285. 5 |
| Arc of dircetion $=$ | $=42.38$ |

The Sun to the Zodiacal Parallel of Mars. In $\because=3.52$ where the $\odot$ 's declination is 10.6 S .
From the cos. of the long. short of $r 26.8 \quad 9.95317$
Subtract the cosine of $\delta$ 's dec. $10.6 \quad 9.99322$
Cosine of $24.14-$ from $360 .=335.46$
R. A. of aspect . . 9.95995

T'angent of the sun's pole $7.52 \quad 9.14041$
Tangent of Mars's declination $10.6 \quad 9.25073$
Sinc of the A.D. of the aspect $1.25 \quad 8.39114$
Right ascension of the parallel 335.46
Ascensional difference 1.25
O. A. of the parallel under the sun's pole 337. 11
O. A. of the sun under the same pole 285. 5

$$
\text { Arc of direction - }-52.6
$$

The Sun to the Parallel of Jupiter's declination $\mathbf{0}$. $\because \mathbf{i}$ S. which he acquires in $\because \therefore$ s. 29 .

Cosine of the longitude of the parallel
distant from $r 21.31 \quad 9.96363$
Cosine of Jupiter"s declination S. 24 9.99532
Cosine of 19.53 -from $360 .-340.7$. R. A. 9.97331
$\begin{array}{ll}\text { Tangent of the sun's pole } 7.52 & 9.14011 \\ \text { Trugent of the declination } 8.34 & 9.16925 \\ \text { Sine of the A. D. of the aspect } 1.10 & \mathbf{8 . 3 0 9 6 !}\end{array}$
Kight aseansion of the nspeet 340. 7
Ase. ditl. muder the sun's pole 1.10
(I. A. of the parallel 3.41.17
O. 1. of the sum under his own pole 2s:5. it

$$
\text { Are of dircction }=56.12
$$

## sPECULUM PHENOMENORUM，

OR

## A TABLE OF ZODIACAL ASPECTS．

First to the Solar Orb．

The Sun to the zodiaeal $*$ of $D$ in $v f 11.52$
semiquartile of $h-19$ ． 18 semiquartile of 大－が21． 6
quintile of $D-1523.52$
$\square$ of $4-1524.43$
$\delta$ of 우－W2 28． 26
－＊of $\mathrm{r}_{2}$－ 4.16

©＇s Dec．
The Sun to the zodiacal $*$ of $D$ in $v$ 11． 52 23． 1
22． 4
21.48

21． 31
21． 22
19． 13
18． 44
17． 31
15.58

14． 26
14． 16
13.37

9． 56
－－ठ of ठ－天 6． 6
－－$*$ of $\not \subset-* 6.46$
9． 2
sesquiquadrate of $21-2 \begin{gathered}\text {－} \\ 9.43\end{gathered}$
8． 18
7． 29
6． 31
These are the prineipal zodineal aspeets formed by direet motion to the sun，who being giver of life，when he meets the zodiaeal parallel of $\begin{gathered} \\ \text {（followed by the } \\ \square\end{gathered}$ of 5 and $\delta$ of $\delta$ ），I am of opinion the flame of vitality will be quenched，and the spirit of the native will return to God who gave it．＂Ora pro matre mihi．＂

Calculation of the Zodiacal Asperts.

First. The Sun to the Sextile of the Moon.

Tangent of the © © pole 7.52
Tangent of the declination 23.1
Right ascension of the nspect 28.2. 3.5
Asecnsional difference 3.22
0. A. of the aspect under the $\odot$ spole 286.17

0 . A. of the sun do. 285. 5
.Ire of direction 1.12

The Sun to the Semisquare of Saturn.
As cosine of the declination $22.4 \quad 9.96696$
1s to cosine of the long. from $r \boldsymbol{i} 0.42 \quad 9.51919$
$S_{0}$ is radius . . . 10.00000
Tu cos. of $69.6-$ from $360 .=290.54$ I.A. 9.55223
Tangent of the sun's pole 7. 52 $\quad 9.140-11$
Tangent of the declination 22. $4 \quad 9.60786$
Sine of ascensional difference $3.13=8.7 \cdot 4827$

Right ascension of the aspect . 290. 54
A. D. of ditto under the $\odot$ 's pole 3.13
O. A. of the aspect under ditto . 294. 7

0 . A. of the sun 285. 5

Are of direction
9. 2

The Sun to the Semiquartile of Mars.
As cosine of the declination . . 21. 489.96777
Is to cosine of the longitude of the aspect short of $v$ as before 68. $54 \quad 9.55630$
So is radius
10.00000

To cos. of $67.11-$ from $360=292.49$ R.A. 9.58853
Tangent of the sun's pole $7.52 \quad 9.14041$
Tangent of the deelination 21. $48 \quad 9.60203$
Sine of the ascensional difference $3.10=8.74244$
Right aseension of the aspect . . . . 292. 49
Ascensional difference of ditto . . . . 3. 10
O. A. of the aspect under the $\odot$ 's pole 295.59
O. A. of the sun ditto . . . 285. 5

Are of dircetion $=10.54$
The Sun to the Quintile of the Moon.
As cosine of the declination . . 21. 31 9.9686 .3
Is to cosine of the longitude - . 66. S 9.60704
So is radius . . . . . . . . . . 10.00000
To cos. of $64.13-$ from $360=295.47$ R.A. 9.63841
Tangent of the sun's pole 7. 52 9.14041
Tangent of the declination 21. 31 9.5957\%
Sine of the ascensional difference 3.58 .73618

Right asecnsion of the aspect . . 295. 17
Iseensiound difference of ditto . . 3. \&
O. A. of the aspect . . . . . . 29. . $\overline{5}$
O. A. of the sun muder his own pole 28.5
Are of direction 13. i0

The Sun to the Quartile of Jupiter.
Ls cosine of the declination . . 2i. 029.96907
Is to cosine of the long. as above (6.). 179.62131
$S_{0}$ is radius . . . . . . . . . . 10.00000
Tu cos. of $63.19-$ from $300=296.41$ R.. 9.9 .65294


Nime of the ascemsional difference 3. 6 8.7:32tit

| Sight ascension of the aspeet | 996. 11 |
| :---: | :---: |
| Ase. difference of ditto under the $\bigcirc$ - pole | 3. ${ }^{\text {i }}$ |
| Obligne ascension of the aspeet | 299. 17 |
| Oblique asecu-ion of the sma | 28.i. |
| Are of direction | 1.1. 12 |

The Sun to the Conjnnetion of Vems.
Tangent of the sun's pole $7.52 \quad 9.140-41$

+ Tangent of the dec. of $0 \quad 21$. 1439.00386
Sine of the A. D. of 9 under the $\odot$ s pole 3. $11=8.7 \cdot 1427$
Right aseension of Venus . . . . 300. i2
$\rightarrow$ Ascensional difference of $P$. . . 3. 11
O. A. of $\%$ under the pole of the sun 304. 3
- O. A. of the sun ditto . . . 285. ;

Are of dircetion $=18$. is

The Sun to the Scatilc of Saturn.
As cosine of the declination . . 19. $13 \quad 9.97510$
Is to cosine of the long. sliort of $r$ 55. $42 \quad 9.75191$
So is radius
10.00000

To cos. of $53.16-$ from $360=306.44$ R.A. 9.77681

|  | 52 |  |
| :---: | :---: | :---: |
| Tangent of the declination | 19. |  |

Sine of the asc. difference of the aspect 2. $46 \quad 8.68269$
Right ascension of the aspect . . . . . 306. 44

Arc of direction 24. 25
The Sun to the Sesquiquadrate of Ilerschell.
As cosinc of the declination
18. $44 \quad 9.97636$

Is to cos. of the long. taken as before 53. 46 9.7716.
So is radius . . . . . 10.00000
To cos. of $51.23-$ from $360=308.37$ R.A. 9.79528
$\begin{array}{lllll}\text { Tangent of the sun's pole } & \cdot & 7 . & 52 & 9.1+041 \\ \text { Tangent of the declination } & \cdot & 18 . & 41 & 9.53119\end{array}$
Sine of the ascensional difference . 2. 418.67160
Right ascension of the aspcet . . 308.37
Aseensional difference of ditto
2. 41
O. A. of the aspect under the $\odot$ 's pole 311.18

0 . A. of the sun under the same pole . 285.5

The Smin to the Quartile of the Moon.

| As cosine of the declination |  | 17.31 | 9.97935 |
| :---: | :---: | :---: | :---: |
| Is to eosine of the long. short of $r$ |  | 48. | 9.82438 |
| So is radius |  |  | 10.00000 |
| To cos. of $45.35-$ from $360=314.9 .5$ R. .1. $9.8 \cdot 4.300$ |  |  |  |
| Tangent of the sun's pole . 7. 52 <br> Tangent of the bourcititic die $e^{6}$ 1\%.31 |  |  | $9.1-4041$ |
|  |  |  | 9.49916 |
| Sine of the A. D. of the aspect |  | 2. $30=$ | $=8.63957$ |
| Right ascension of the aspect <br> A. D. of ditto under the $\mathcal{O}$ 's pole |  |  | 314. 25 |
|  |  | . | ?. 30 |
| O. A. of the aspect O. A. of the Nim |  |  | 316.85 |
|  |  | . | 285.5 |
|  | Are of dire | ection | 31.50 |

The Sun to the Quintile of Saturn.

| As cosine of the declination | 1\%. 58 | 9.982915 |
| :---: | :---: | :---: |
| Is to eosine of the long. short of $r$ | 43.42 | 9.85912 |
| $\mathrm{So}_{0}$ is radius |  | 10.00000 |
| To cosine of $41.5-$ from $360=318.55 .1$ R.A. 9.85621 |  |  |
| Trangent of the Sun's pole | 7.59 | 0.140.11 AJthe |
| Tangent of the dechination | 15. 88 | 9.45054 |
| Sine of the A. D. of the aspeet | 2.16 | 8.59695 |

$\begin{array}{lr}\text { Right aseension of the aspeet } & 318.5 .3 \\ \text { Asc. diff. under the Sun's pole } & 2.16\end{array}$
O. A. of the aspect
O. A. of the Sun as before

Are of direction
3:1. 11
25.7. 5) iubtrat the

36

The Sun to the Trinc of Herschell.
As cosine of the declination $\quad 14.26 \quad 9.98607$
Is to cosine of the long. short of $r 38.46 \quad 9.89193$ So is radius
10.00000

To cos. of 36.23 . - from $360=323.37$ R.A. 9.90586

| Tangent of the Sun's pole | $\cdot$ | 7.52 | 9.14041 |
| :--- | ---: | ---: | ---: |
| Tangent of the declination | $\cdot$ | 14.26 | 9.41057 |
| Sine of the A. D. of the aspect | 2.2 | 8.55098 |  |

Right ascension of the aspect 323.37 Asc. diff. under the Sun's pole 2. 2
$0 . A$. of the aspect under ditto $32 \overline{5} .39$
O. A. of the Sun as before 285.5

Arc of dircction 40.34

The Sun to the Semiquartile of Mercury.
As cosinc of the declination . 14. 169.98639

Is to cosinc of the long. short of $r 38$. 14 9.89514 So is radius
10.00000

Tocosine of $35.51 .-$ from $360=324.9$.R.A. 9.9087 .5

| Tangent of the Sun's pole |  |  |  |
| :--- | ---: | ---: | ---: |
| Tangent of the dcelination | . | 7.52 | - |

Sinc of the A. D. of the aspect $\quad 2.1=8.54 .572$
Right ascension of the aspect 324. 9 Asc. diff. of the aspect . . 2. 1

0 A. of the aspect under the $\odot$ 's pole 326. 10
0. A. of the Sun under ditto . 285. 5

Arc of direction 41. 5

The Sun to the Trine of Jupiter.


The sun to the Quartile of Saturn.
As cosme of the declination 9 . 50 ${ }^{\prime} 9.99342$
Is to cosine of the long. short of $r 2.5$. $2^{2} 9.95 \cdot 476$
so is radius:
10.00000

To cosine of 23. 49. -from $360=336$. 11 RA. 9.9613 .1


$$
\begin{array}{ll}
\text { Right ascension of the aspect } & 336.11 \text { f-⿵人 tint } \\
\text { doc. dill. of ditto } & 1.23
\end{array}
$$

O. A. of the aspect under the $\odot$ 's pole 337 . 34
O. 1 . of the Sun as before

Are of direction
28.). :
fullish is


The Sun to the Conjunction of Mars.
'Tangent of the Sun's pole . 7. 52 9.14041
Tangent of the declination of Mars 10. $6 \quad 925073$ ther
Sine of $\delta$ 's A. D. under the $\odot$ 's pole $1.25=8.39114$

| Right ascension of Mars | 335. 13 A |
| :---: | :---: |
| Asc. difference | 1.2.; |
| O. A. of ot under the E's pole | $339.743^{4}$ |
| 0 . A. of the $\odot$ under ditto | 245. ${ }^{\text {a }}$ |
| Arc of direction | 5.4. 43 |

The Sun to the Sextile of Mercury. As cosine of the declination , 9. 2) $9.994: \%$ axe then Is to cosine of the long. short of $r$ r 23.1419 .963 .17 rer So is radius 10.00004

To cosine of $21.30-$ from $360=338.30 \quad 9.96 \div 99$
Tangent of the sun's pole
7. 529.1404

Tangent of the declination
9. 29.2013

Sine of the A. D. of the aspect

1. 168.34175

Right ascension of the aspect
338. 30

+ Aseensional difference of ditto

1. 16
O. A. under the pole of the sun
2. 46

- O. A. of the sun uuder his omn pole

285. .
54.41

The Sun to the Sesquiquadrate of Jupiter.
As cosine of the declination
S. 18

Is to the cos. of the long. short of $r 20.17$
So is radius
To cos. of $18.34-$ from $360=3 \ddagger 1.26$ R.A.

| 9.99543 | Siditac |
| ---: | :--- |
| 9.972206 | $\cdots$ |
| 10.00000 | 6 |



The Sim to the Trine of the Moon.
As cosine of the declination . 7.29. . 9.9960 S Jow
Is to cosine of the long. short of $r$ 18. A $b 9.97788$ a prom
So is radius . . . . . 10.00000
To cos. of 16.3 .4 from $360=343.26$ R. A. 9.98160


The Sur to the Semiquartile of Yenus.
As cosine of the declination . 6. $31 \times 9.99718$ SuCtinud
Is to cosine of the long. short of $r 16.34 b!9.98159$
So is radius . . . . . 10.00000
To cos. of $15.14-$ from $360=344.46$ R. A. $9.98+41$


The Sun to the Mundane Aspects of each Planet.
The Sun to the sextile of Saturn.
Here Saturn moves conversely; the aspect is therefore called direct, because the significator is supposed to remain fixed.


The eighth house forms the $*$ to the M. C.; then find Saturn's distance from the eighth house thus:

| Right aseension of Saturn <br> $+\frac{2}{3}$ of h 's semi-diurnal are | $\begin{array}{r} 242.40 \\ 41.13 \end{array}$ |
| :---: | :---: |
| - Right ascension of ML C. | 283. 53 |
| Right ascension of M. C. | 276. |
| Saturn's primary distance | 7. |

Then, as the diurnal horary time of the sun 9.10 is to its distance from the M. C. 5. 17, so is the diurual horary time of Saturn 10. 18, to his secondary distance from the righth house 5. 56, which is on the same side as the primary distance, because the sun has not passed the M. C.

| Prmary distanee of Saturn <br> - Secondary distanee | $7.27$ |
| :---: | :---: |
| . re of direction | 1.31 |
| Ire of direction © to * of ! | 1. 31 |
| - $\frac{1}{3}$ of $\mathrm{S}^{\prime}$ s semi-diumal are | 20.37 |
| Wrection the $C$ to the of | -2 |

The Sun to the trine of Naturn direct.
The trine is formed below the earth, consequently a new propertion mast be taken.
lishlu avecusion of Satmon $\quad 21 \geq-10$

- i of 乌s semi-nocturnal are $\quad$ is. 46

|  | 163. it |
| :---: | :---: |
| Silltract the R. I of the lmum eorli | 96. 26 |
| -turn's primary dist. from the sixth $=$ | (i). 24 |

1. ther sum's diurmal horary time 9. 10. is to his distance fom the I. C. .). 17, so is Siturn's nocturnal horary that I! II. to his secondary distance from the sisth halle 11. Ol .

> | Primary distanee of Satmon | 67.24 |
| ---: | :--- |
| Secondary distanec | 11.21 |
| Are of direction | $i 6.7$ |

The Sun to the conjunction of Satmrn.
flere the significator must move conversely, consequently the dircetion is termed converse.

Onc-third of h's semi-diurmal are is . 20. 37

- his distance from the eighth house . 7. 27

Remains the distance of Saturn from the cusp of the ninth house
The sun's distanee from the M. C. 5. 17 $+\frac{1}{3}$ of $\odot$ 's semi-diurnal are 18. 20

The sun's primary distanee from the nintl $=23$. 37
As the diurnal horary time of Saturn, 10. 18. is to his distanee from the ninth house, 13. 10., so is the sun's diurual horary time, 9.10 . to his seeondary distance, 11.44., which is on the contrary side of the ninth from whenee his primary distance was taken.

| Primary distance of the sun | 37 |
| :---: | :---: |
| Seeondary distance | 11. 44 |

Are of direetion $\odot$ to the $\delta$ of h 35. 21

- 1-6th of the $\odot$ 's semi-diurnal are 9.10

Are $\odot$ to the semiquartile of $\mathrm{t}=26.11$
The Sun to the Sextile of Jupiter converse. Right aseension of Jupiter . . 203. 22
Add 1 's semi-diurnal are . . i8. 30
— R. A. of the M. C. . . 276.26
Distance of $\psi$ from the seventh $=\frac{5.26}{}$
The primary distanee of the sun from the ninth house (which forms a $*$ with the seventh) is 23.37 .

As 2 's diurual horary time, 13.5., is to his distane from the seventh, 5. 26., so is the $\odot$ 's diurnal horary time, 9 . 10., to his secondary distanee, 3. 30 ., which is the distance he must be on the same side of the ninth to form the $*$ to 2 .

Primary distanee of the sun . 23.37

- Secondary distance . . 3. 30

$$
\begin{aligned}
& \text { Are of direction }=20 \text {. } ; \\
& +\frac{2}{3} \text { of } \odot \text { 's semi-diurnal are . 36. } 40
\end{aligned}
$$

$$
\text { Arc } \odot \text { to } \delta \text { of } \because=.96
$$

$$
-:=\text { scmi-diurual are . . } 27.30
$$

$$
\text { © to the semiquartile of } 2=\overline{29.17}
$$

$$
\text { Ire of dircetion to the sextile . } 20 \text {. }
$$

$$
\text { - of ©'s semi-diurnal are } \quad \text { 18. } 20
$$

$$
\text { Are of direction } \odot \square \geq \overline{1.17}
$$

$$
\text { - I-ith of } \odot \text { semi-limual are . 11. ( }
$$

We of direc. of the $\odot$ to the quintile of $\geq=12$. 4
The Sum to the 'Trime of Jupiter direct.
Aupiter's distanee from the seventh
5. 96

- : of hiv semi-nocturnal are - 33. 50

Primary distance of $\geq$ from the sixth 39 . 16

1. the sun's diurnal homary time, 9. 10., is to his distance from the M. C., i. $\overline{\text { IV }}$., so is the nocturual horary the of Jupiter, 16. 3 .3., to his sccondary distanee, 9.45 .

Primary distance from the sixth . 39. 16
.iccomdary distance
9. 4.5

Are of dircetion
29. 31

+ dupiter's nocturnal horary time

16. :i.

Ire of direc. © to the sesquiquadrate of 216.26
The Sun to the Trine of Herschell direct.
Right asceusion of Herschell . . 80. 27

+ ₹ of 1 l scmi-nocturnal are . . 36. 19
116.46
litght ascension of the Imum eceli

96. 26

Primary distanec of 4 from the second . 20. 20
A. the sun's diurnal II.T. 9. 10., is to his distance from tle M. C. 5. 1\%., so is Herschell's nocturnal H. T., 9.5. ,
to his secondary distance, $\mathbf{5}$. 32 ., whieh is the distance he must be on the same side of the second house when the ${ }^{-}$ aspect is complete, because the sun is on that side of thetenth house.

Primary distance of Herschell 20. 20
Sceondary distance $\quad \overline{3} .32$
Are of direction $\odot$ to the $\Delta$ of 14.48
$+\frac{1}{3}$ of H's semi-nocturnal are 18. 10
Arc of the $\odot$ to the $\square$ of 1132.58

- $\frac{1}{2}$ H's semi-nocturnal arc $2 \overline{7}$. I. 4

Arc of diree. $\odot$ to the sesquiquadrate of H
5. 44

The Sun to the Opposition of Herschell.
Here the sun must move conversely to form the aspert, the direction is of eourse converse.

Right ascension of the I. C. . 96.26
Bight ascension of Hersehell . 80. 27
Distance of Hersehell from the 4 th 15.59
The sun's primary distance from the M. C. is $\mathbf{3} .17$. , is Herschell's N. IL. 'T. 9. 5. : his distance from the fourth house, $15.59 .::$ the sun's diurnal horary time, 9. 10. to his secondary distance, 16.8 ., on the opposite side of the M. C., where he will meet the opposition of ILersehell.

Primary distance of the sun . 3. 17
Secondary distance . . . 16. is
Are of direction 23. .2.
The Sun to the Sextile of Mars direet.
Right ascension of Mars
335. 13

- $\frac{2}{3}$ of $\delta^{\prime \prime}$ s semi-diurnal arc

50. 4t
287.29

Right ascension of the M. C.
276. 26

Primary distanee of Mars from the 12th house 11.3

Is the sm"s D. H. T. 9.10. : his distance from the M. C. $5.17 .:$ the D. H. 'T. of Mas, $\because 2$. H. : his secondary distame, 7 . 1 ? on the same side of the 1 : 3 th as his primary distance.

| Primary distanec of Mars <br> Secon Jary distance | $\cdot$ | $\cdot$ |
| ---: | :--- | ---: |
| Are of direction |  | $\cdot$ |

+ the diurnal horary time of Mars 1?. 11
Ire of direction $\odot$ to the semiquartile of $\delta 16$.
$+\frac{1}{2}$ the ecmi-diurual are of Mars. 3s. 3


The sim to the Quartile of Mars romperse.


- his distance from the thelfh . . 11. 3

Distance of Mars pa-t the ascoutint . 11. $1!1$

Prinary distance of the sun from the M. C. is i. $1 \%$.
Is the D. II.T. of $\delta 12.41$. : his distance past the deceldant, 14. 19. : : the sun's D. II. T. 9. 10. to his :ocomdary distance-past the mid-heaven, 10. 21.

Primary distance $\quad . \quad . \quad \therefore .15$
Secondary distance $\quad . \quad 10.21$
Are of dircetion . 15. 38
$+!$ of $\subset$ semi-diurnal are . $\quad 15.20$
Are of direction $\odot$ to the $\Delta$ ot : 33. is
$+\circlearrowleft$ D. H. T. or 1-6th of his scmi-diurnal are 9. 10
Ire $\odot$ to the sesquiquadrate of of $43, \quad$ i

| Are of direction to the quartile <br> - 1 -5th of $\odot$ 's semi-diurnal are | $\begin{aligned} & 15.3 \\ & 11.0 \end{aligned}$ |
| :---: | :---: |
| Are of direction $\odot$ to the quintile of $\bar{\square}$ | 4,38 |

The Sun to the $\delta$ of 9 direct motion.
Right aseension of $P$. . 300. in
Right ascension of the M.C. . $\quad 276.26$
Primary distance of $Q$ from the M.C. 24. 26
As the ©'s D. H. T. 9. 10. : his distance from the M. C. 5. 17.: : the D. H. T. of 9 9. 32. : her semondary distanec from the M. C. 5. 30.

| Primary distance of | 24.26 |
| :---: | :---: |
| Sceondary distance | 5. 30 |
| Are of direction | 18. 50 |

The secondary distanec is subtracted, because $\phi$ is on the same side of the M. C. when the conjunction iformed.

The Sun to the Sextile of Venus conrerse.
Right ascension of Venus . 300. 52

- $\frac{1}{3}$ of Venus's semi-diurnal are 19. 4

|  | 281. 48 |
| :---: | :---: |
| Right ascension of the M. C. | 2-6. 26 |

Distance of Venus from the M. C. .J. 2.2
'There are various ways of taking the distances, a few epecimens of which may be useful, as the student may choose that which he thinks fit. Thus:-

The distanee of Venus from the M. C. is 24. 26

- is of Venus's semi-dimmal are . 19.4

The distance of Venus from the 11 th as before 5. 22

| Or, -Right ascension of Yenus | 300. 2 - |
| :---: | :---: |
| Right asecusion of the M. C. | $\because 76.96$ |
| Difference between their R. A.'s | 2.4. 2 ; |
| - $\frac{1}{3}$ of Venus's semi-diurnal are | 19.4 |
| Distance as ab | i. 20 |

Tlese examples will be sufficient to cheidate all methods ut any utility.

The primary distance of the sun from the ninth, whel forms a sextile with the eleventh house, is 23.37 . then, as, the diurnal horary time of Venus, 9. 32. : her distance short of the deventh, $\therefore .2 .2 .::$ the D. U. I'. of the -9.10 . : his sceondary distance alse short of the ninth, 5. 10 .

Primary divance . . . 23.37
Sceondary distance . . . $\overline{3} 10$
Are of direction required $18 .: 3$

+ of た's semi-liurnal are . . 18. 20
Are ${ }^{2}$ to the quartile of Venus 36.47
$+\frac{1}{2}$ of $C$ semi-chimrnal are . 18. 20
Are of direction $\bigodot$ to the $\Delta$ of 95.5.
Are of direction © to the sextile of Yeme 18. 27
- 1-6th of - - E semi-diurmal are . 9. 10

The Smin to the Conjunction of Mereury converse.
Right asecnsion of Mercury . 977.13
Right aseension of the M. С. . 276.26
Distanec of Mereury from the M. C. 0. 47.

Primary distance of the Sun from the M. C. 5. 17.
As the D. H. T. of Mercury, 9. 54. : lis distanec from the M. C. 47'. : : the sun's D. H. T. 9. 10. : his secondary distance, or the distance lie must be on the same side of the M. C. before he meets the $\delta$ of $\nsucceq 43$ '.

| Primary distanec <br> Secondary distance |
| :--- |
| Are of direction |
|  | | .5 .17 |
| ---: |
| 0.43 |

The Sun to the Sextile of Mcrcury direct.
The sun's distance from the M. C. was found to be $\overline{5} .17$. Then to find the distance of Mcreury from the cusp of the eighth house, which forms a sextile with the M. C.

| Take $\frac{2}{3}$ of צ's semi-diurnal arc <br> + his distance from the M. C. |
| :--- |
| Primary distance of $¥$ from the eighth |

As the sun's D. H. T. 9. 10. : his distance from the M. C. 5. 17. : : the D. H T. of $\ddagger 9.54$. : his sccondary distance, 5. 45. on the same side of the cighth house that his primary distance was taken from.

| Primary distance of $Y$ from the cighth house | $10 \therefore 4$ |
| :---: | :---: |
| Sccondary distance | 4 |
| Arc of direction $\odot$ to the $*$ of $Y$ | 34. 39 |
| - 1-6th of ţ's scmi-diurnal arc | 9. 54 |
| Arc $\odot$ to the scmiquartile of Mercury | 24.45 |
| $+\frac{1}{3}$ of Mereury's diurnal arc The sextilc is | $34.39$ |
| qua |  |

Or, —are of direction for the semiquartile 24. 4. +12 Mercury's semi-diurnal are . . 29. f²

Are of direc. 5 to the quartile of $¥$ as before in. it

- 1-5th of the same semi-are 11. i3

Ire $O$ to the quintile of Mereury $=\{2$. 31

The Sun to the Mundane Quartile of the Moon, direct motion.
light ascension of the moon
2.21. 31

A-censional diff. of $\partial$ under the pole of The 1!. 1.
1). D. of the 3 under the same pole . ?0. 16
1). D. of the seronth house . . 1sti. oti

The D 's primary distanee from the seventh $=1 . \mathrm{i}$.
Is R's II. II.T': his distance from the M. C. i. 17. : : the J's diurnal II. 'T. 11. IN. : her secondary distance trom the serenth house. (i. IS., which is the distance the 3 will be me the same side of the seventh when the quartile is rompletr.

| Primary distancio | 18. |
| :---: | :---: |
| Scemdary distance | 6. 15 |
| Are of dirction | \%. |

The sun to the Trine of the Moon, direct motion.
In this case a new proportion must be male, becanse the moon forms the trime below the earth.


As the $\odot$ 's D. H. T. 9. 10. : his distance from the M. C. 5. 17. : : the $D$ 's nocturnal horary time (because the direction is formed in the nocturnal hemisphere) 10. 29. her secondary distance from the sixth house.


Are of direc. $\odot$ to the sesquiquadrate of the $D 59$. 5
The Sun to the Scxtile of the Moon conferse.
Onc third of the moon's semi-diurnal are 23 . 35,

- her distance from the seventh house . 15. .01

The moon's distance from the eighth house 7. f.i
The sun's primary distance from the M. C. 5.17 .
As the D's D. H. T. 11. 48. : her distance from the cusp of the eighth house, $7.45 .::$ the sun's diumal horary time, 9. 10. to his sceondary distance, 6.1 . on the opposite side of the mediun corli.

The sun's primary distance . . 5. 1,
Sccondary distance
6.1

Arc of dircetion 11. 1s
— 1-5th of the $\odot$ 's (or $\frac{2}{3}$ of his semi-d. are) 7.20
Are of dircetion $\odot$ to the quintile of the $D \quad 3$. is
Are of clircetion to the sextile . 11. 15.

+ l-6th of the $\odot$ 's semi-diurnal are 9.10
Are of direc. $\odot$ to the scmiquartile of the $D \quad 20$. Is
The Sun to the Rapt Parallel of Venus.
Right ascension of Yenus

300. 5

Right ascension of the sun
281. 43

Diffcrence of the right ascensions
19. 9

| Right ascension of Venus | 300. 52 |
| :---: | :---: |
| Right ascension of the M. C. | $\because 76.26$ |
| Primary dist. of Venus. the applying planet, from the M. C. | 24.96 |
| The sm's semi-dinrnal are | 5\%. 0 |
| The semi-diurnal are of Venus | 37.12 |
| Smm of their semi-arcs | 112.12 |

Is the $-1 m$ of their spmi-ares, 112 . 12. : the semi-are of Venus, $87.12 .:$ the diflerence of the R. A's 19. !. : the ereondary distance of Venus, 9. 16 .


The sin to the Rapt Parallel of Mars.

Right ascension of Mars
338.13

Right ascension of the sum
231. 13

Diflerence
Right ascemson of Mars
334. 13

Right asernsion of the M. C.
! 9 (6. 20
Primary dist. of $\delta$ the applying planet 61. - 7
The stmis semi-diurnal are
in. 0
The semi-dimrnal are of .lars
-6. 6
Sim 131. 6
Is the sum of the semi-ares, 131. 6. is to the semi-are of Mars, 76. 6. , so is the difference of the R. A. 56. 30. th the secondary distance of Mars 33. 1.

Primary distanec $\quad 61.17$
Sceondary distance . 33.1
Are of direction
28. 46

The Sun to the Mundane Parallel of Venus converse.
The distance of Venus from the M. C. is 24.26
The distance of the sun (primary) is . .5. 17
As the D. II. 7. of Venus, 9. 32. : her distance from the M. C. 2t. 26. $::$ the $\odot$ 's D. H.'T. 9. 10. to the secondary distance, 23. 29. on the opposite side of the M. C.
Primary distance - 5. 17

Sccoudary distance - 23. 29
Are of dircetion
28. 46
'The Sun to the Mundane Parallel of Venus, direct motion.
Is the $\odot$ 's D. H. T. 9. 10. : his distance from the M. C. 5. 17. : : the D. H. T. of Venus, 9. 32. : her secondary distance, 5.30 , on the contrary side of the II. C.

Primary distance of Yeuus 21. 26
Secondary distance . 5. 30
Are of dircetion
29. 56

The Sun to the Mundane Parallel of Mars, converse notion.
As the D. H. T. of $\sigma$ 12. 41. : his distance from the M. C. 61.47. : : the ©'s D. 1. T. 9. 10. : his secondary distance 44.49 . or the distance he must be on the opposite side of the M. C. When the parallel is complete.

> | Primary distance |
| :--- |
| Sccondary distance |
| Are of direction |
| 4. |
| 4.40 |

The are of direction of the sun to his own quartile in mundo is $55^{\circ}$. because $55^{\circ}$. is his semi-diurnal are.

Then, arc of direction $\odot$ to his own $\square$ 5. 0

- l-5th of his semi-diurnal are . . 11.0

Are of direction $\odot$ to his own quintile 44. 0
$\frac{2}{3}$ of the sun's semi-diurnal are is $36.40 .=$ the sextilehalf his semi-are is 27.30. the are of direction of the sun to his own semi-quartile.

The sun to his own Semiquartile in the Zodiac.
The direction falls in $=25.46$. declination 12. 57 .

| A. the cosine of the declination | 12. 51 | 9.9\% |
| :---: | :---: | :---: |
| Is to the cos. of the long. short of $r$ | 31. 1.1 | 9.91738 |
| Sos is the radius |  | 10.00000 |

To cos. of 31 . is. - from $360=328.2$. R. A.
of the aspect . . . . . 9.928.57
'Tangent of the sun's poler . $\quad$. 5 ? $\quad 1.14011$
Tang. of hiv dec. in $2=25.16$ - 12. it ! ! 3 (in16:3
Sine of the A. D. of the aspect $1.14-\overline{\text { s.jotent }}$

| Right asceusion of the aspect | 329. |
| :---: | :---: |
| Aeecnsional ditl. under the smis pols | 1. 19 |
| Obligue ascension of ditto | 3323.31 |
| Oblicque asc. of the sun under ditto | 20. |
| .tre of dirction | 14. 116 |

1 might caleulate the are of direction of the smo to hes own sextile in the zodiar, which aspeet falls in 2610 . 46 . Unt the above will be amply sutlicient to shew how the student may calculate them in all cases whatever.

These are the principal Ares of direction to the sma we -hall now proced to calculate those to the moon in this nativity, by the rules and instructions given for that purpose in a former part of this work.

## SPECULUM PHENOMENORUN，

OIt

TABLE OF ZODLACAL ASPECTS TO THE MOON．

|  | Place of the $\lambda$ spect． | Lat．of ${ }^{\text {j }}$ ） | Deelin． |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  | semiquartile－ $\mathrm{Y}^{\text {－}}$－IIL 21.46 | 0． 53 | 17．22 |
|  | semiquartile－－－IL 25． 10 | 0.32 | 18．42 |
| － | ＊－年－H28． 26 | 0． 18 | 19． 32 |
| － | ठ－！－ 1 4．1s |  |  |
| － | ロ－ | 0． 21 S. | 21.45 |
|  | semiquartile－ 7 －$\ddagger$ 9．13 | 0． 41 | 22． 39 |
|  | D semiquartile 9 －$\ddagger 13.26$ | 1． 3 | 23． 29 |
|  |  | 1． 44 | 2.4 .54 |
| － | quintile－す－$\ddagger$ 2．4． 6 | 1．38 | 12.5 .17 |
| － | ＊－21－t 24． 43 | 1． 56 | 25．1！ |
|  | ＊－－${ }^{\circ} \mathrm{O}$ 6． 6 | 2． 5.5 | 26.14 |
|  | quintile－$\frac{71}{y}$－＇rs 6.43 | 2． 37 | 26．14 |
| － | ठ－〕－189 6．－16 |  |  |
| － | $\delta-\odot-1910.46$ |  |  |

The oblique descensions of all the aspects are taken under the pole of the moon，and with the latitude，\＆e．the moon will have in those places，as in the above table．But in conjunction it is different．The oblique descensions are taken under the moon＇s pole，but with the latitude and declination of the planet to which she is directed．＊This rule must be olsserved in all cases，with the sun as well as the moon．

[^2]The Moon to the Quintile of 9 in the Kodiac.
As the cosine of the declin. 1.2 .2849 .98398
Is to the cosine of long. from $\Omega 40.2609 .8383 .4$ whod 2
$s_{0}$ is the cosine of the lat. 1.21 c 9.99985 uthait
$0.8382=$
9.98395

To the cos. 11. $30+1$ sil. $=2.31 .30$ R. A. 9.38824
Tangent of the Moon's pole 16. 1s 10.01971

+ Tans. of the dee. of the aspect 1 s . 2 - 9.11201


Right ascension of the Moon 22:1.31

- Ace. difl. under her own pole

11. 47
O. D. of the 3 under ditto
206.14

Right ascemsion of the aspere
22-4. 30

- Isecnsional difference mod r the D's pole 16.50

Oblique descension
207.40

- Oblifue dee of the $)$ anker her pole enti. 14

$$
\text { Ire of dircetion }=0.06
$$

In the following zodiacal aspects, the logarithmical calculations of the right ascensions and asemsiomal differences are omitted, as they are all calculated in the same manner, and enongh has been alreaty said to make them plain.*

[^3]The Moon to the Semiquartile of $\Varangle$.
Right ascension of the aspect 229.35

- Ase. diff. under the D's pole 19. 6

Oblique descension of ditto 210. 29

- Oblique deseen. of the $D$ under do. 206. 4.4

$$
\text { Are of direction }=3.45
$$

The Moon to the Semiquartile of the Sun.
Right ascension of the aspeet 235. 34

- Aseensional diff. under the D's pole 20.45


The Moon to the Sextile of Venus.
Right asceusion of the aspeet 236.15

- Ase. diff. taken as before 21.47

Oblique descension 214. 28

- O. D. of the $D$ as above 206.44

Are of direetion . 7.44

The Moon to the Conjunction of Satum.
'Tangent of the Moon's pole 46. 18 10.01971
十 'Tang. of L 's dee. (see Speculum) 19.179 .54390
Sine of $\wp$ 's A.D. under D's pole 21.299 .56361
R. A. of Saturn (see the Speculum) 2.42.40

- A. D. under the D's pole . 21. 29

Oblique deseension of Saturn
221.11

- Oblique deseension of the Moon

The Moon to the Quartile of Mars in Zodiac. Right ascension of the aspect - 211. a Ascensional difference mater the D's pole 2.I. 41

Oblique deseension of the aspeet 219 . 2
Oblique descension of the 3 . 206i. 41

$$
\text { Are of dirction 12. } 4
$$

The Moon to the Semiquartile of Jupiter.
Right aseension of the aspeet taken under the D's pole as before 217. if
Ase. difl. of ditto mater the same pole 2.i. is
Oblique descension of the aspect 22.2 .3
Oblique descension of the $) \quad$ 20fi. . . 1
Are of direction 15. 1!

The Moon to the Scmiquartile of Venus.
Right ascension of the aspect 251,53
Ase, difil. under the D's pole
Oblicur desemsion of the aspeet in
Obligne deseension of the 3 under its
own porle . . 2016, 4.
Are of direction 1s. 6

The Moon to the Opposition of Herselecil.
Right asceusion of the aspect 260.20
Ase. diff. of ditto muler the D's poke 29. 4
Oblique descension of the aspect 231.16
Oblice deseen. of the $D$ as before $\quad 2016.44$
Are of direction …32

The Moon to the Quintile of Mars.

| Right asecnsion of the aspeet | 263.2S |
| :--- | ---: |
| Aseensional diff. under the $J$ 's pole | 29.37 |
|  |  |
| Oblique descension of the aspeet | 233.51 |
| Oblique desecnsion of the $)$ as abore | 206.44 |
|  | Are of direction |
|  | 27.7 |

The Moon to the Sextile of Jupiter.

| Right aseension of Jupitcr's sextile | 26-4. 9 |
| :---: | :---: |
| Ascensional differenee as before | 29. 10 |
| Oblique descension of the aspeect | 234.29 |
| Oblique descension of the 3 | 206. 44 |
| Are of direction | 27.45 |

## The Moon to the Sextile of Mars.

Right ascension of the aspeet
276.45

Aseensional differenec of ditto
31. 3

Oblique descension of ditto
245.4 .5

Oblique descension of the ?
206.44

Are of direction 39 . 1

The Moon to the Quintile of Jupiter.
Right ascension of the aspect 27ラ. 99
Asecnsional diff. under the moon's pole 31. 3
Oblique descension of the aspeet $2-46.26$
Oblique deseension of the $D$
206. 44

Arc of direction 39.42

The Moon to the Conjunction of the Sun.
Right ascension of the $\odot \quad \therefore$ - $\odot 1.13$
Asc. diff. of the $\odot$ under the $)$ 's pole 26.25
Ublique desecusion of the $\odot$ under ditto 95.5 . Is Oblique descension of the ) . 206. 44

Are of direction 48. 3.4

The Moon to the Conjmetion of Mercury. Right asccusion of ? . ロテ7.13 Ase. diff. ot ? muder the pole of the 9 ?3. 1.

Uhlique descension of the o 2.j3. in
Ublique descension of the ) 2n6. 14
Are of direction 47.14

The Moon to the \%odiacal Parallel of Saturn.*
The Moon meets the dechination of Saturn 19. 17, in $m$
27.30 , where she has 0. 23 nortl latitude.

Right aseension of the nejpect
235. 18

Ascensional difference under the $\partial$ 's pole 21.29
Oblique descension of the par. 213.49
Oblique descension of the ) . 206.44
Arc of direction $\%$
The Moon to the Zodiacal Parnllel of Mercury.
The Moon acquires the declination of Mereury in $t$ 2.20 , where she has only $1^{\prime}$. of south lat.

[^4]Right ascension of the place of the parallel 240. 15 Ase. diff. of do. under the $D$ 's pole 23.15

Oblique desecnsion
217. 0

Oblique descension of the D
206.44

Are of direction $\quad 10.16$
The Moon to the Zodiacal Parallel of Venus.
This parallel falls in $\ddagger 6.40$, where the Moon has 27 . south latitude, and deelination 21. 53. south.

| Right aseension of the aspect | 244. 4. |
| :---: | :---: |
| Ase. diff. under the D's pole | 21.31 |
| Oblique deseension of the parallel | 219.53 |
| Oblique descension of the D | 206.44 |
| Are of dir | 13. 9 |

The Moon to the Parallel of the Sun's Deelination.
The Mon mects the declination of the Sun 23. 2 in 7 11. 20 , where she has $52^{\prime}$. south latitude.

| Right aseension of the aspeet | 249. 39 |
| :---: | :---: |
| Aseensional difference | 26.25 |
| Oblique deseension under the D's pole | 223. 14 |
| Oblique deseension of the D | 206.44 |
| Arc of direction | 16.30 |

The Moon to the Zodiacal Parallel of IIerschell.
The Moon has the declination of Herschell 23. 18 in $f$ 12. 35 , where the Moon's lat. was 58 '. south.

Right ascension of the parallel 250. 59

Ase. diff. under the D's pole
Oblique deseension
22.4. 12

Oblique dese. of the $D$ under her own pole
206. 44

The Moon to the Mandanc Aspeets of the Plancts. Thu Moon to the Conjumetion of Jupiter eonverse' Right aseension of the $\quad$ 2?l.31 Lse. diff. under the pole of the aseend. 19. 15

| Ohlique deseension of the ? | 202. 16 |
| :---: | :---: |
| Olb. dese of the Th house | 106. 26 |
| Primars distance of the $)$ from ditto | 15. 0 |

A. Jupiter's 1). 14. '1'. $13.8:$ his distanee from the 7 th homee i. ég, so is the Muon's 1). H. T. 11. 18, to her serondary divanee on the same side of the seventh 4. it.

$$
\begin{aligned}
& \text { Primary distanee of the } \\
& \text { Secomiary divanee }
\end{aligned} \quad 15.50
$$

$$
\text { Are of direction 10. } 36
$$

The Moon to the Sevtile of dupiter direet.
The Moon's distance from the sth honse is $\overline{7}$. A. .
Reght arecnsion of hupiter
203. 2:2

Right ascension of the ham cosli
96. 26

Distance of Jupiter from I. C.
106. 86

- $\frac{3}{3}$ of $\underset{4}{4}$ 's seminocturual arc
67.40

Primary distance of Jupiter from the Sith or $*$ to the sth

Is the Moon's D. M. T. 11. 4S, is to her distance past the eusp of the Sth 7.45 , so is the nocturnal horary time of Jupiter, 16.5 , to his seenodary distance 11. 7, past the cusp of the fith, or on the contrary side from his primary distance.

Primary distance . . 39.16
Sccondary distance 11.7
Arc of direction 50. 23

The Moon to the Trinc of Herschell converse.

| Right asecnsion of Herschell <br> $+\frac{1}{3}$ of H 's seminocturnal are | $\begin{array}{r} 80.27 \\ 18.10 \end{array}$ |
| :---: | :---: |
|  | 98. 37 |
| - Right ascension of the I. C. | 96. 26 |
| Hersclucll's distance from the 3rd house | 2. 11 |

Primary Distance of the Moon from the 7 th $=15.50$.
As H 's nocturnal II. T. 9. $\mathbf{3}$, is to his distance from the Brd honse 2. 11, so is the D's D. II. T. 11. A8, to her secondary distance on the same side of the 7 th 2.50 .

Primary distance of the D . 1.5. 50
Secondary distance . . 2. .50
Arc of direction 13. 0

- 1-6th of the D's semidiurnal arc 11.48

Are of direc. the $D$ to the sesquiquadrate of 1.12

The Moon to the Quartile of Herschell conversc.
The distance of Herschell from the 3rd is 2. 11.
Distance of the $D$ from the 7 th 15.50
$+\frac{1}{3}$ of the $D$ 's seminocturnal are
36. 2 F

Primary distance of the $D$ from the 6 th housc 52.15
As the nocturval H.T. of till 9.5 , is to his distance from the 3rd housc 2. 11, so is the D's N. H. T. 18. 12, to her sccondary distance 4. 22.

| Primary distance | 52. 15 |
| :---: | :---: |
| Sccondary distance | 4. 22 |
| Arc of | 47.53 |

The Moon to the Trine of Mars clireet.
The Moon's distance past the eusp of the Sth house is 7. 4.), and the primary distance of Mars from the 12 th , which forms a trine with the sth, has been fomed in be 11. 3.

As the D's D. H. T. 11. 4S, is to her distance from the rensp of the Sth 7.45 , so is the D. H. T. of $\delta$ 12. 41, to


| Primary distance of Mars | 11. 3 |
| ---: | ---: |
| Sccondary distance | 8.90 |
|  |  |
|  | Are of direction |
|  | 19.93 |

- 1-6th of $\delta$ 's semidiarnal are 12.41

Are of chrec. the 2 to the sesquiquadinte of $\delta \quad 6,42$


Are of direction $)$ to the $\square$ of $\delta$ 1.4. 4.5
+1 -ith of $\delta$ 's semidimrnal are 15.13
Are the 3 th the quartile of $3 \quad i 9.5 S$

The Moon to the Opposition of Mars converse.
The distance of Mars from the $10 t h$ is 11.3 ; and the primary distance of the Moon from the 6th 52.1 .5.

As the D. H. T. of of 12. 11, is to his distance from the 1'th house 11. 3, so is the Mon's N. IL. T. 18. 12, to her secondary distance 15.51 , on the same side of the 6 th, whence the primary distance was taken.

Primary distance of the Moon 52. 15
Secondary distance . 15. 51
Arc of direction 36. 24

The Moon to the Quartile of Venus direct.
The Moon's distance from the 8 th as before, $7.4 . \%$; primary distance of Venus from the llth, 5. 22.

As the D's D. H. T. 11. 48, is to her distanee from the 8th house 7.45 , so is the D. H. T. of 99.32 to her seeondary distanee from the llth, 6. 16 .

This seeondary distance must be added to the primary distanec of Venus, becanse she will be on the eontrary side of the eusp of the llth house, when the aspeet is eomplete, as the moon has already passed the eusp of the Sth, 7.45 , towards that of the 7 th house.

$$
\begin{aligned}
& \text { Primary distanee of o } \ddagger \text { 5. 22 } \\
& \text { Seeondary distanee } \\
& \text { 6. } 16 \\
& \text { Are of direction } 11.38 \\
& +1-5 \text { th of } 9 \text { 's semidiurnal are } 11.20
\end{aligned}
$$

Are the $D$ to the quintile of $9=23 . \quad 4$
Are of direetion to the $\square \quad 11.38$
$+\frac{1}{3}$ of Venus's semidiurnal are 19. 4
Are the $D$ to the $*$ of Venus 30.42 + Venus's diurnal horary time 9.32

Arc the $D$ to the semiquartile of Tenus 40.14
$+\frac{1}{2}$ of Yenns's semidiurnal are 28.36
Are of direetion the $D$ to the $\delta$ of Venus 68.50

The Moon to the Trine of Venus eonverse.
The distance of Venns from the 11 th house is 5.22
The Moon's primary distanee from the 7 th 15.50
As the D. H. T. of Venus 9. 32, is to her distance from the llth, 5.22 , so is the D. II. T, of the D 11. 48, to her scoondary distance 6.38 , on the same side of the 7 th honse.

| Primary distanee | - | 15. 50 |
| :---: | :---: | :---: |
| Seeondary distance |  | 6. 38 |
| Arc | re | 9.12 |

The Doon to the Quartiln of Mercury comers.
Distance of $\ddagger$ from the M. C. 0.17
Primary distance of the Moon from the $\overline{-t h} 15.50$
As the I). H. T. of $\$$ ! I . H , is to his distance from the M. C.. 17. so is the Moon's I. H. 'I. 11. I8', to her secondary divance if from the en p of the 7 the, on the -anme side as the primary distance, becanse there she forms the mumblate quartile with $\ddagger$.

Primars distance of the Moom 1.i ion
Semondary disteme - 0. id
Are of direction 11. 5,
Whe Doon to the Trine of Merenry converse.
Here a dex proportion mun be made becanse the trine


l'monary divial ce of the Som from the lith 5e. 15





The Moon to the Nextile of Nereury direet.
Fhis Hoon's distance from the sth $\quad$ 7. 4.
Promary distance of Mferor! from the N. C. 0. 47

1. the Mom's 11. H. T. H. 1s, is to her distance from



| l'rimary distance | 0.47 |
| :--- | :--- |
| Cecondary distance | $5.3 \%$ |

+ 1-fith of 2 Are of dirction 6. 4.4
Are of direc. ) to the semiquartite of $\bigcirc 16.38$
$+\frac{1}{2}$ Mercury's semidiurnal are 29. 42
Are of direction the $D$ to the $\delta$ of $¥ 446$

The Monn to the Sextile of Saturu conserse.
Right ascension of Saturn 212.40
$+\frac{1}{3}$ of Saturn's semidiurnal are $\quad 20.37$

Primary distance of the Moon from the 7 th, 1.5 . 00 .
Is y 's D. H. 'T. 10. 18, is to his distance from the 9th house 13. 9, so is the N. II. T. of the Moon 18. 12, to her secondary distance 23.14 , on the other side of the cusp of the 7 th house.

Primary distance . . 15. 50
Secondary distance . . 23.14
Arc of direction 59.4
$+1-5$ th of the Moon's * (or $\frac{2}{3}$ of her seminocturial arc)
14. 34
53.38

Are of direc. of the Moon to the $*$ of 1539.4

- 1-6th of the Moon's seminocturnal are 18. 12

Are of direc. of the Noon to the smiquartile of $5 \quad 20.52$

The lloon to the Conjunction of Saturn direct.
The Moon's distance from the $S$ th house 7.45
Primary distance of h from the same house 7.2s
As the Moon's D. II. T. 11. 48, is to her distance past the cusp of the Sth house 7.45, so is 6's D. H. T. 10. 18, to his secondary distanee 6.46 .

$$
\begin{aligned}
& \text { Primary distance . } 7.28 \\
& \text { Secondary distance . } 6.46 \\
& \text { Are of direction 1.4. } 14
\end{aligned}
$$

The Moon to the Parallel of Jupiter direct.

$$
\text { Distance of Jupiter from the } \overline{7} \text { th }
$$

Primary dist. of the Moon from the same lis. .80
As 2 's D. 11. T. 13. $i$, is to his distance from the 7 th honse i. 26, so is the Moon's Ki. H. 'I. 18. 12, to her arcominey distance 7.33.

| Primary distance |
| :--- |
| Secondary distmec |
| Are of direction |

The Mnon to the l'arallel of Jupiter converse.
As the lloon's 1). H. T. 11. As, is to lier distmee from the cusp of the 7 th, 15.50 , so is 2 's N. 1I. T. 16. 55, to his sccondary distance 22.42.

| Primary distanec of dupiter | 5. 26 |
| :---: | :---: |
| Sccoudary distance | 22. 42 |
| Are of direction | 28.8 |

The Moon to the Mandane Parallel of Saturn direct.
Primary distance of Saturn from the Th house 28. I
Primary distance of the Moon 15.50
As the Moon's D. 11. T'. 11. 18, is to her distance from the Th homse, 1.5. :0, so is Saturn's N. H. T. 19.42, to lise sccondary distanec, 26.26 .

Primary distance of Saturn 28. 4
Secondary distance . 26. 26
Arc of direction 54.30

The Moon to the Mundane Parallel of Saturn eonverse.
As Saturn's D. H. T. 10.18, is to his distanee from the 7th house, 28.4, so is the Moon's N. H. T. 18. 12, to her secondary distanee, 49. 35.

| Primary distanee of the Moon | 15.50 |
| ---: | ---: |
| Secondary distanee | 49.35 |
|  |  |
| Are of clirection | 65.25 |

The Moon to her own Semiquartile in the Zodiac.
The aspect falls in $\neq 26.52$, where the moon has 1. i south lat. and 24.33, S. declination.

Right ascension of the aspect 266.33
Asc. diff. under the Moon's pole
28. 33
O. D. of the aspect under do. 238. (1)
O. D. of the $D$ under her own pole 206. 44

$$
\text { Are of direction } 31.16
$$

The Moon to her own Scxtile in the Zodiac.
In 's 11.52 , where the Moon's lat. is 3 . 19, S. dec. 26. 16, S.
$\begin{array}{llr}\text { Right aseension of the aspect } & 283 . & 1! \\ \text { Asc. diff. of do. under the Moon's pole } & \begin{array}{r}283 \\ \hline\end{array} \\ \begin{array}{lll}\text { Obliquc descension } & 652 . & 8\end{array}\end{array}$
O. D. of the Moon under the same pole 206. It
Arc of direction $\quad$-4. 24

The Moon to lier own Sextile in Mundo.
Distance of the Moon past the 8th house
Primary distance of the Moon from the cusp of the 6 th, which forms a $*$ with the 8 th 52. I:
As the Moon's D. H.'T. 11. 48, is to her distance from the Sth 7. 15, so is the Moon's N. H. T. 18.12, to her seeondary
distanee 11 . .is, or the distance she mant be on the contrary side of the Gth, when the sextile is complete.

Primary distance $\quad$.is. 1.5
Sccondary distance 11.37
Are of dircetion ti.t. 12

- 1-Gth of the Moon's scminocturnal are 18. l2

Are of direc. of the Moon to her own semiquartile 16 . ()
I have not much faith in the efficacy of comerse zet riscal dircetions, though some writers entertain high opiniots of them. It may be as well to give an example. that the tud it may be criabled to adopt or rejeet them as he phesese. They are performed in the same manner as others, ouly the pinke of the promittor must. be nsed instend of tha of the signiticator. Thus to direct the Sun to the conjur tion of saturn in the zodiac liy converse motion.

| Right nacension of Saturn | 212.10 |
| :---: | :---: |
| Aat. ditl. under his awn pold | 1.1. 23 |
| O. D. of tomuler his onit pole | 207.17 |
| Right ascension of the Sun | 2¢1. 13 |
| Asc. dill. of the $\mathcal{C}$ under h's pole | 1s. |


O. U. of $\mathfrak{C}$ mader his own pole 227.17

Arc of direction 35. 35

The various ares must now be collected in suceessipe order, when they will appear as in the following table of directions, thus completing all the calculations requisite to be made in this nativity.

## TABLE OF DIRECTIONS, ZODIACAL AND MUNDANE.

Directiois.

Ires.
n. M.
0. 17
0. 17
0. 56

1. 12
2. 12
$\rho$ to the sextile of the $D$ in the zodiae
M. C. to the quintile of the Monn 1.41
$\odot$ to the $*$ of $h$ in mundo, direct motion
3. 31
$\odot$ to the $*$ of $\delta$ ditto ditto 3. 1.4
$D$ to the semiquartile of $Y$ in the zodiac $\therefore$. 15
$\odot$ to the quintile of the $D$ in mundo, by converse motion
$\odot$ to the $\delta$ of $Y$ in mundo, converse
4. 34
© to the quintile of ditto $\delta$. 3n
$\odot$ to the semiquartile of $\mathfrak{\xi}$ in the zodiac 9. .?
M. C. to the conjunction of the Sun $\quad$. 17
Aseendant to the quartile of the Sun $\quad \therefore .17$
M. C. to the quartile of Jupiter . .i. 26
Ascendant to the opposition of Jupiter $\quad$. 2 (
$\odot$ to the sesquiquadrate of Hersclicll m mundo, dircet notion
5. 4.1
$D$ to the semiquartile of the $C$ in the zodiae $6 . \quad 5$
) to the semiquartile of $\delta$ in mundo, direct 6.42
) to the $*$ of $Y$ in mundo, direct motion (i. 44
$D$ to the zoliacal parallel of Saturn 7. S
M. C to the sextile of Saturn 7.27
Moon to the $*$ of $\frac{9}{}$ in the zodiac . . . 7.14
$\bigcirc$ to the $\square$ of the $D$ in mundo, direct notion $9 . \quad \because$
Moon to the $\Delta$ of $\subset$ in mundo, converse 9.12
F to the semiquartile of Tenus do. 9.17
Moon to the zodiacal paralle! of Mercury 10 . I6
Directions. Arcs.
D. 1 .
The © to the zodiacal parallel of Venus ..... 10. 41
to the semiquartile of $\delta$ in the zodiac ..... 10. 5.4
Hoon to the of of in mmudo, converse ..... 10. 56
M. C. to the sextile of Mars ..... 11. 3
(O) to the sextile of the J in mundo, comverse ..... 11. 1 s
Moon to the a of Vemms in mumdo, direct ..... 11. 3*
Moon to the Ge Mars in the zodiac ..... 12. $1 \cdot 1$

- to the quintile of $\because 1$ in mando, converse ..... 12. 17
Hoon to the $\Delta$ of If in mando, converse . ..... 13. 0
Moon to the zodiaeal parallel of Yenus ..... 13. !
Sto the guintile of the lloon in the zodiac ..... 1.3. in
Woen to the $\delta$ of the mander direet motion ..... 11.1.1
Monn to the $\delta$ of 5 : in the zodiac ..... 14. 9
$\because$ to the rapt paralled of V'rums ..... 14. 40
$\because$ to the of Jupiter in the zodiae ..... 14. 4.'
- to the $\Delta$ of 11 in mando, direct motion ..... 14. 4
Moen to the of Mereury ditto, comerse ..... 14. is
Hoon to the semiguartile of 21 in the zodiane ..... 15. 19
$\because$ to the of of is mmado, comserse ..... 1.5. 38
II. $\mathrm{C}^{\circ}$. to the quintile of Naturn ..... 15. 4!
Ascemelazt to the 8 of the lloon ..... 15. ill
$\therefore$ to the semicgurtile of $\delta$ din mundo, tlirect ..... 16. 9
Mown to the zodiaeal parallel of the $-\odot$ ..... 16. 31
Moon to the semicuartile of $Y$ in mundo, direat ..... 16. 38
Moon to the zothical paralled of H ..... 17. 98
: io the zonliacal paralled of Merenry ..... 15. 34
Vloon to the semiguartile of Yenus in the zorliac ..... 1s. 6
To the sextile of Vomms in mundo, converse ..... 18. 27
© to the $\sigma$ of Vemmsin mundo, direct motion ..... 18. 56
Oto the $\delta$ of Venus in the zodiac ..... 18. 58
Moon to the $\Delta$ of $f$ in mmendo, direet. ..... 19. 23
- to the sestile of $\stackrel{y}{r}$ in mundo, converse ..... 20. ,
- to the semiquartile of the Moon do. do. ..... 20. 24
Ascendant to the trine of Meremes ..... 20.3 .1
Moon to the semiquartile of lsin mundo, coms. ..... 20.58
Sto the \& of it do. do. ..... 21. 2.5
$\odot$ to the - of saturn in mundo, direct ..... 2.2. is
Moon to the quintile of Venus do. do. ..... 23. 4
Moon to the parallel of 21 do. do. ..... 23. 23

Directions.
The Ascendant to the $\Delta$ of the Sun
Ascendant to the semiquartilc of Mars ..... 23. 4423. 37
M. C. to the semiquartile of Mars ..... 23. 44
$\odot$ to the zodiacal parallel of Saturn
© to the ..... 24. 2.5
Ascendant to the quartile of Venus ..... 24. 26
M. C. to the conjunction of Venus ..... 24. 26
Moon to the 8 of Hi in the zodiac ..... 24. 32
$\odot$ to the scmiquartile of Mercury in mundo, direct motion ..... 24. 45
$\odot$ to the quintile of Venus in mundo, converse ..... 25.45
Ascendant to the scxtile of H ..... 25. 51
$\odot$ to the semiquartile of Saturn in mundo, converse motion ..... 26. 11
Moon to the scsquiquadrate of H in the zodiac ..... 26. 13
Moon to the quintile of Mars do. ..... 27. 7
$\odot$ to his own semiquartile in mundo ..... 27. 30
Moon to the sextile of 2 in the zodiac ..... 27.45
Ascendant to the opposition of Saturn ..... 28. 4
M. C. to the quartile of Saturn ..... 28. 4
Moon to the parallel of 4 in mundo, converse ..... 28.
$\odot$ to the rapt parallel of Mars ..... 28. 46
$\odot$ to the parnilel of $\circ$ in mundo, converse ..... 28. 46
$\bigcirc$ to the scmiquartilc of $\mathbb{1}$ in mundo, converse ..... 29. 17
$\odot$ to the $\Delta$ of 2 in mundo, direct motion . ..... 29. 31
$\odot$ to the parallel of $P$ do. do. ..... $29.5 t^{\circ}$
Ascendant to the sesquiquadratc of Mercury ..... 30. 29
M. C. to the semiquartile of Mcrcury ..... 30. 29
Moon to her own semiquartile in the zodiac ..... 31.16
$\odot$ to the $\square$ of the Moon in the zodiac ..... 31. 50
Ascendant to the sesquiquadrate of the Sun ..... 32. 47
M. C. to the semiquartile of the Sun ..... 32.47
$\odot$ to the $\square$ of in mundo, direct motion ..... 32.58
$\odot$ to the $\Delta$ of $\delta$ in mundo, converse ..... 33. 58
$\odot$ to the sextile of $\underset{\uparrow}{ }$ in mundo, direct motion ..... 34. 39
$\odot$ to the $\delta$ of $\mathrm{t}_{2}$ in the zodiac, converse ..... 35. 21
$\odot$ to the conjunction of Saturn in mundo, conv. ..... 35. 35
$\odot$ to the quintile of Saturn in the zodiac ..... 36. 6
Moon to the opposition of $\delta$ in mundo, converse ..... 36. 24
Asccudant to the sextilc of Mars ..... 36. 2.Arcs.D. M.

Arcs.

1). M.The $C$ to his ow'n sextile in mmdo
(-) to the $\square$ of Venus in mundo, converse 36. 17
Moon to the sextile of Mars in the zodiae 39. 1
Moon to the sextile of Satnm in mundo, eoms. 39. -
M. C. to the trine of Juputer 39. 16

Moon to the quintile of 2 in the zodine 39.12
Moon to the seminquatile of $O$ in mundo, di-
reet motion
II. C. to the sextile of Mereury 10. 23

- to the $\Delta$ of 11 in the zodiace 10. 31

Sun to the semignartile of Merenre in the zodine
11. :

Sin to the trine of the 1 loon in mmmalo, theet 11.46
11. ('. to the sestile of the sma d1. 5\%

Sunto the quintile of Mere ryinmmale, direct 12.31
Sun to the zudiacal parallel of the Moon de. 3א
Sun to the sespumpatrate of' $\delta$ in mundo, con-
wrec motion
Ascendant to the trine of Venus 13.30
Sun to the trime of dnpiter in the zodiae 13.36
Sun to his own quintile in mando 1-1. 0
Noon to the - of 's in mmado, direct motion 14. 15
Sun to his own semiquatile in the zodiac 14. 16
Moon to her own sextile in the zodiae $1 . i .: 1$
Hoon to the eonj. of Mereurs in mmado, clireet 16.20
fin to the sesquignadrate of $2 f$ do. do. $16 \because 6$
A. cendant to the quntile of Mars 16.31

Isecudant to the semicpurtile of $11 \quad$ dij. 16
Men to the conjunetion of $¥$ in the zodiac 17.11
Noon to the quartile of 11 in mamelo, comerse 17 . i3
II. C. to the quintile of Meremy $\quad 18.18$

Moon to the conj. of the Sun in the zotliac 18.31
M. C. to the quintile of the Nim 19.17

Sun to the parallel of of in mmado, eonserse 19. 57
Moon to the sextile of dupiterin mmodo, direct. 50.93
Moon to the $\Delta$ of Merenrs in mundo, converse 50. 19
Sum to the zodiacte parailel of Mars 5 ge ( 0
Asceadant to the trime of the Moon 52.15
Sun to the quartile of saturn in the zodiac 52.29
Ascendant to the eesquiquadrate of Vemus $53 . \%$

Directions. Bres.
The M. C. to the semiquartile of Venus . . .i3. 2
Moon to the quintile of Saturn in mundo, conr. i3. 34

Sun to the quartile of Mereury in mundo,
direet motion

34.27

Sun to the conj. of $\delta$ in inundo, direct motion 54.25
Nutun to the parallel of Saturil do. do. 54.30
Sun to the sextile of Mercury in the zodiae 5.41
Sun to the conjunction of $\dot{\delta}$ in the zodiae 54.13
Sun to his own quartile in mundo ai. 0
Sun to the trine of Senus in mundo, converse a. 7
Sun to the $\Delta$ of Saturn in mmindo, dircet $\bar{s} 6.1$
Ascendant to the sesquiquadrate of Jupiter 36 . Il
M. C. to the sesquiquadrate of Jupiter $\overline{0} 6.11$

Sun to the zodiacal parallel of Jupiter $\overline{06}$. $1:$
Sun to the conj. of Jupiter in mundo, conrerse 50.45
Sun to the sesquiguadrate of Jupiter in the zodiac
57. 30

Sun to the $\Delta$ of the Moon in the zodiae 59. 23
Sum to the sescuiquadrate of the Moon in mundo, direet
.5!. is
Moon to the quintile of $\delta$ in mundo, direct in. is
Ascembant to the opposition of Meremry 60. If
M. C. to the quartile of Mercury . (i0. 11

Ase. to the 8 and M. C. to the $\square$ of the Sun 60.
Sun to the sesquiquadrate of Venus in thezodiae 60. :3:
Isecudant to the quartile of Mars 61. 4
M1. C. to the conjunetion of Mars . 61. 5
M. C. to the sextile of Vems 62.34

Moon to the parallel of Naturu in mundo, comr. 6i.5. $2 . j$
M. C. to the $\Delta$ of siaturn $67 \cdot 27$
M. C. to the $\Delta$ of ITersehcll $67^{-}$. 11

Noon to the eoujunction of $f$ in munclo, by direct motion
64.50

The following nativity is given withont any explanator: remarks, with the calculations abridged purposely as air exercise for the industrious student; a carcful attention to which, with the preceding ouc, I flatter myself, will be amply suficicient to make lim perfect in the calenlatory Acpartment of the seience, as they involse ererv case and diffrulty whieh can possibly oceur.

## THE NATIVITY OF THE AUTHOR.

$\because 71.13$.


 Thu sum's pole is $\because 4.53$. $\qquad$ 3

- 1:1.:5

The right aseensions, $\& e$ e eontained in this speeulum are ealeulated exactly in the same manner as those in the preeeding one, it is, therefore, useless to give the operations in fuli.

The time of birth, as given in the doeuments of my father, was 10 h .30 m . p. s. I had a sudden and very serere illness at the age of eighteen years and three months, followed at intervals by several others; by these I proeeeded to rectify the nativity. I observed the positions of Mars, Saturn, and Hersehell, and I judged that when these formed their evil aspects to the aseendant, illness would inevitably take plaee.

I'lhe opposition of Mars is the first in the train which I took to be the oeeasion of the first illness; and the exartness of the anteeedent, as well as the subsequent ares, with the times of various aceidents, eonfirmed my opinion that this was the case.

Thus eighteen years and fourtecn weeks, the exaet time of the first attaek, eonserted into an are of direction, is $18^{\prime \prime}$. Then direet the aseendant to the opposition of Mars.

$$
\text { Right ascension of Mars . } 232.18
$$

Asc. diff. under the pole of birth 33. 5from $90 .=56.55$ S. D. Are of Mars , $\quad 36.8 .5$

- 289.13
R.A. $\odot 113.14+10 \mathrm{~h} .30^{\prime}=$ R. A. M. С. 270.4 .4

| Palse are of direetion dise. to the 8 of Mars |
| :--- |
| True are of direetion |
| 18.29 |
| 18. |

Diff. between the true and false ares to be added to the estimated time of birth, in time -2 min. uearly
R. A. of the M. C. at the estimated time of birth 270.44 $+29 .=271.13$. The R. A. of the M. C. at the true time of birth 10 h .32 min . r . m.

## TABLE OF ZODIACAL ASPECTE TG TUA： LじMIN゙MALES．

The © to the trine of of in $=2.2 .26$ ．der．21．．．，


To the Moon．


The following ap of ar calculater uearly in the order w which they operatc；the stulent my，therfore，taha which methot he pleases．

The Moon to the Quartile of the $\odot$ in mundo direct.
First find the Are to the Sextile.


As D's N. II. 'T. 12. 3. : her distance from the sceond, 2. 23. :: $\odot$ 's N. 11. T. 9. 35. : to his secondary distance, 1. 51.


Are of direction $\odot$ to the $\square$ of the $) \quad 0$.

The Sun to the Mundane Semiquartile of Jupiter converse.
Is the N. II. T. of 49.14 . : his distance from the third house, 9.26. so is ©'s N. H. T. 9. 35. to his secondary distance from the third house, 9. 47.

The s'in's primary distance . 41. 11
Secondary distance . . 9. 47
Are of dircetion $\odot$ to the $\delta$ of 2131.24

- $\frac{1}{2}$ of the $\odot$ 's sminocturnal are 28.45

Are of direction $\odot$ to the semiquartile of 12 2. 39

The Aseendant to the Trine of the Sun.
Right ascension of the sum . . 113. 14

- $\frac{1}{3}$ of the $\odot$ 's semi-nocturnal are $1!.10$
- R. A. of the fonrth house - 91. 13

$$
91.4
$$

Ire of direc. Iscendant to the $\Delta$ of the $\odot$ 2. II
The Moon to the Opposition of Mars, in mundo, converse.
As the D. II. T. of of 9. 29. is to his distance fiom the ciehth house, in . so is the moon's X. II. T. 12. 3. to her secondary distance from the second honse, 1. 1-4.
l'mary dintance of the moon from the ond ?. 23
Secondary distance

1. 14

$$
\text { Are of dircetion is. } 3
$$

The . Weon to the Fodiacal sextile of the Sim,
Reght asecosion of the aspere 50. 16

Axecomamal diff. of do. under the moon's pole 1". 12

The sun to the Trime of Mars in the Zodiac.
Right asecusion of the aspect i 117. 2.4
Acernsional ditt'. under the sun's pole l2. 1
(M) Iique deseension of the aspect . 129. 25
0. W. of the sun under his own pole 19.i. 11

$$
\text { Ire of direetion } 3.1-1
$$

The Moon to the Semirpartile of Venus in mondo direct.
First find the . Ire of Direction to the Semi-sextile. Is the J's N. I. T. I2. 3. ic to her distane from the se-
cond house, 2. 23. so is 9 's N. H. T. 9. 14. to her secondary distance from the third house, 1.50.

Primary distance of 9 from the third $=14.55$
Sccondary distance
Arc of direction 13. 5.
Arc of dircction to the semi-scxtile 13. 5

- 1-6th of ''s semi-nocturnal arc or N. H.T. 9. 14

Arc of dircc. of the moon to the semiquart. of Venus 3. 51
The Moon to the Scsquiquadrate of Saturn in mundo, conversc.
First calculate the Mundane Trine.
As $h^{\prime}$ ' D. H. T, 9. 32, is to his distance from the ninth house, 8. 15, so is the D's N. H. T. 12.3, to her secondary distance from the ascendant, 10. 26.

Primary dist. of the moon from the ascendant 26. 29
Secondary distance . . . . 10. 26
Arc of direction 16. 3

- 1-6 of the moon's semi-nocturnal are . 12. 3

Are of direc. the moon to the sesquiquad. of Saturn 4. 0
The Sun to the Sesquiquadratc of Saturn in mundo, conversc.
Find the Are of direction to the Opposition.
As $\wp$ 's D. H. T. 9. 32, is to his distance from the ninth house, 8.15 , so is the $\odot$ 's N. H.T. to his secondary distance from the third house, 8. 18.

Primary distance of tbe sun from the third $=41.11$
Sccondary distance
8.18

Are of direc. of the sun - to the 8 of Saturn 32. 53

- $\frac{1}{2}$ of the sun's semi-nocturnal are . 28. 4.5

Arc of direc. of the sun to the scsquiquad. of Saturn 4. 8

The Aloon to the Semi-sextile of Jupiter in the Zodiar.
Right ascension of the aspect with the hatitude
the moon will have there, (see speculum) . 51. 34
Ase. diff. of the najeet under the mon's pole . 12. 96
O. A. of the aspect moder ditto . . . 39. is
O. A. of the moon meder ler own pote - . 34. I'

Are of direction 4. 36

The simn to the Trine of Naturn in Mundo, direet motion.
 house !. il, so is !’: 1). II. T. !. 30, to his secoudary distance from the cusp of the ninth. 2.50.
Primary distance of Naturn from the ninth
Secondary distance
S. 15

Are of direction the sun to the trine of Satmen 5.25

The Sun to the Mnmane Sextile of Jupiter direct.

 distance from the cusp of the third homes, 2. 15.

Primary distance of Jupiter . 9. : 6
Secomdary distance . . $\because .45$
Arc of direction 6. 41

The Monn to the Mundane Sextile of Venus, converer.
As O 's N. II, T. !. 11, is to $14.5 \%$, F 's distance fron. the third house, so is the 3 's X . II. T'. It. 3. to her s.condary divance from the cu=p of the ascendant, 19. 30. The monns primary distance from the ascondant 26.96 Secondary distance 19. 30

The Moon to the Opposition of Mars in the Zodiac.
Right ascension of the opposition with the latitude
the moon will have therc
. 54.15
Asc. difference under the moon's pole 40.4312 .57
Oblique asc. of the aspect under the moon's polc 41. 18 Oblique ascension of the noon under her own pole 34. 12

Arc of direction 7. 6

The Moon to the Scmiquartile of Mcreury in the Zodiae.

| Right ascension of the aspect | 54. 34 |
| :---: | :---: |
| Asccnsional difference taken as before | 13. 3 |
| Oblique ascension of the aspect | 41. 31 |
| Oblique ascension of the moon as above | 34. 12 |
| Arc of direction | 7. 19 |

The Moon to the Scmi-sextile of Jupiter in Mundo, direct motion.
As the D's N. H.T. 12.3, is to her distance from the 2nd house, 2. 23, so is 21 's N. II. T. 9. 14, to his sccondary distance from the third house, 1. 50.

Primary distance of Jupitcr from the third 9. 26
Secondary distance

1. 50

Arc of dircction 7.36
Ascendant to the Trine of Saturn.
Right ascension of Saturn . . 260. 43
$+\frac{1}{3}$ of Saturn's scmi-nocturnal arc 19. 5


The Sun to the Quintile of the Moon in the Zodine.
Right ascension of the quiutile
120. 45

Ascensional difl. under the sum's pole of 28 . 23
11. 38
O. D. of the asuect muler ditto . . 13:2. 23
O. D. of the sun muder his own pole . . 12.5. 41

Are of direction
(i. 42

The Moon to the Sextile of Mercury in Mundo, direct.
Is the $3 \times$. X. II. T. 1:. 3, is to her distance from the
 secondary distance from the fourth, 1.17.

Primary distance of Mercury 10. 31
Sceondary distance - . 1. 17
Are of direction 8.14
The Moon to the Semi-sextike of Yemes in the Zotiac.
Right aseension of the arpect with the latitude
the moon will have there
.20. 11
Ascensional difference taken muler the 3 's pole 13. 2.
O. A. of the arpect under the moon's pole . 13. 16
O. A. of the moon under her own pole . . 34. 12

Arc of direction $9 .-1$
Aseendant to the Sextile of Jupiter.
Right ascension of Jupiter - 82. 10
$+\frac{1}{3}$ of 2 's semi-nocturual are 18. 29
100. 39

- R A. of the Imum celi . 01.13

Are of direction
9. 26

# M. C. to the Opposition, and Aseendant to the Quartile of Mereury. 

| Right ascension of Mereury |
| :--- |
| Right aseension of the Imum cerli |

Are of direction | 101. 44 |
| ---: |
| 91.13 |

The Sun to the Conjunetion of Mereury in Mundo, by converse motion.

As |  |
| :---: | N N. H. T. 9. 2, is to his distanee from the fourth house, 10.31 , so is the $\bigodot$ 's N. H.T. $9.3 \overline{5}$, to his secondary distance from the eusp of the fourth, 11. 10.

Primary distance of the sun from the Imum eeeli 22.1
Necondary distance
11. 10

Are of direetion 10. 51
'Ihe Moon to the Quintile of Venus in Mundo, eonverse motion.
First obtain the are of direction to the quartile, thus:As the N. H. T. of 9 9. 14, is to her distanee from the third house, 14. 55 , so is D's D. H. T. 17. 57 , to her secondary distanee from the twelfch, 29.2.
Primary dist. of the moon from the twelfth house 62.23
Secondary distance . . . . . 29. 2
Are of direction the moon to the quartile of Venus 33. 21

- 1-5th of the moon's semi-diurnal are . 21. 33

Are of direction to the quintile 11. 48
The Sun to the Parallel of Jupiter, in Mundo, direct motion.
'The sun's distance from the fourth is . 22. 1
Primary distanee of Jupiter from the fourth 9. 3
As $\odot$ 's noeturnal II. T. 9.35 , is to his distanee from the fourth 22.1, so is 4 's N. H. T. 9. 14, to his seeondary distance from the fourth, 21. 13.
Jupiter's secondary distance
Primary distanec $\cdot$
Are of diretion

The Sun to the Sextile of Venms in Mundo, direct.
As the E's X. 11. T. 9. 3.j. is to his distance from the
 distance from the third, 2. 1.i.

The Asermdant to the Parallel of the Moon's dechination.
The paralled falls in is 3. 36. where the © aequires the J's dectimation.

Right anc. of is . 3.36 . without hatude . 31. 21
bec. dille rence maler the pole of the harosonge 17.43
Oblique axerusion of the pathel . . 13. 38
thblique asernsion of the ascendant . . . 1. 13
Are of direction 12.25
Fhe Mown to the Quartile of Mereury in Mundo, converse motion.
As y's N. II. T. 9. 2, is to his distance from the fourth honse. 10. 31, so is the J's N. II. T. 12. B, to her sercondar! distance from the ancendant, if. 2 .

The mon's primary distance from the aseend. 26. 29
simomary distance . . . . . I4. 2
Arc of dircction 12. 27
The Monn to the Quintile of the Sum in Mundo, direct.
Are of direction to the quartite 0.57
$+1-5$ th of the sum's semi-nocturnal are 11.30
Arc of dircetion 12. 27

The Sun to the Parallel of Jupiter in Mundo, converse.
Is U's N. H. T. 9. 14, is to his distance from the I. C. 9. 3, so is the 〇's N. II. T. 9. 35, to his secondary distance fiom the fourth house, 9. 24.

Primary distance of the sun from the I. C. 22.1
Secondary distance
Are of direction 12.37

The Moon to the Zodineal Parallel of Herschell.
The moon meets the declination of Ilerschell in п 2.51 . where she will have 4. $\mathrm{S}^{\prime 2}$. sotith latitude.
Right ascension of If 2.51 . with the latitude the moon will have there 61.46 Iscensional diff. taken under the moon's pole 14. 16

Oblique aseension of the parallel . . . 47. 30
(). A. of the moon under her own pole
34. 12

Mre of direction 13. 18
'The Sun to the Quintile of Jupiter in Mundo, direct.
Are of direction to the sextile . . . 6. 41
$+1-5$ th of the * (or $\frac{2}{3}$ of $\mathcal{L}$ 's semi-nocturnal arc) 7.24

$$
\text { Are of direction } 14.5
$$

The Moon to the Sextile of Jupiter in Mundo, converse.
Is Y's N. IL. T. 9. 14, is to his distance from the third house, 9.26, so is the D's N. I. T. 12. 3, to her secondart distance from the cusp of the aseendant, 12. 19.

Primary dist. of the moon from the ascendimt 26. 29
Secondary distance
12. 19

Are of direction 14. 10

The sun to the Semiqnartile of Jupiterinthe Kodiae. Kight aseension of the aspeet without latitude 130.12 Iseensional difference under the sum's pole

Oblique ase. of the aspeet under the same pole 140. 0 Oblique aseension of the sun under his own pole 125 . 41

$$
\text { Are of direction 14. } 19
$$

Iseendant to the Sextile of Venus.
Right accension of Ventus . . 87. 40
$+\frac{1}{3}$ of Venus's semi-nocturnal are . 18. 28
$-\mathrm{R} \lambda$. of the linum coli . . 91. 13

$$
\text { 106. } 8
$$

$$
\text { Are of direction 14. } 55
$$

The Sun to the Sextile of Mars in Mundo, direet.
As the ©'s N. H. T. 9.35 , is to his distance from the cusp of the fifth, 2. 51, so is $\delta$ 's D. H. T. !. 2!, to his accondary distance from the seventh honse, 2.49.

Primary distance of Mars from the seventh 18.0
Secondary distance
Are of clirection 15. 11

The Sun to the Scxtile of Herschell in Mundo, direct.
As the $\bigodot$ 's N. H. T. 9.35, is to his distance from the fifth housc, 2. 5l, so is $\mathrm{H}_{\mathbf{\prime}} \mathrm{s} \mathrm{N}$. II. 'T. 11. 13, to his secondary distanec from the cusp of the seventh, 3. 20,

Primary dist. of Herschell from the serenth 18. 34
Secondary distance
Are of direction 15. 14

The Sun to the Sesquiquadrate of Saturn, in the Zodiac, is the next sneceeding direction.


| The Sun to the Rapt Parallel of Mereury. |  |
| :---: | :---: |
| Semi-noeturnal are of the sun | 57. 30 |
| Semi-noeturnal are of Mereury | 54. 10 |
| Sum | 111.40 |
| Right ascension of the sun | 113. 14 |
| Right ascension of Mercury | 101. 44 |
| Difference | 11. 30 |

As the sum of the semi-ares, 111. 40. is to the semi-are of the sun, so is the difference of the right ascensions, 11. 30. to the seeondary distance of the sun from the fourth, 5.55.

Primary distance of the sun
22. 1

Secondary distanee 5. 55

Are of direction 16.6

The Sun to the Semiquartile of Mereury in Mundo, direet motion.
Are of direetion to the sextile . 25.53

- l-6th of Mereury's semi-nocturnal are 9. 2
Are of direction $\overline{16.51}$

The Moon to the Semiquartile of the Sun in the Zodiae. Right aseension of the aspeet 65. 29

Aseensional difference under the moon's pole 14. 47

| O. A. of the aspect under the moon's pole | 50.42 |
| :--- | :--- |
| O. A. of the moon under her own pole | 34.12 |
|  | Are of direetion |

Aseendant to the Parallel of Hersehell's declination.
To parallel of y falls in S 13.47 . dec. 15.59 .
Ritght aseension of 513.47 . without latitude 41. 10
Ascensional diff. under the pole of the aseendant 9.9 .41
Ohlique ascension of the parallel . . 18. 29
Oblique ascension of the aseendant . . 1. 13
Are of direction 17. 16
'The Sun to the Mundane Parallel of Venus, direet.
As $C^{\prime}$ : N. M. T. 9. Bit, is to his distanee from the I. C. ㄹ.. 1, so is $\circ$ 's N. H. 'I'. 9. 1.1, to her sceondary distance from the fourth house, 21. 13.

$$
\begin{array}{rr}
\text { Sccondary distanee of Venus } \\
\text { l'rimary distance from the I. C. } & \begin{array}{r}
21.13 \\
3.33 \\
\\
\text { Are of direction } \\
17.40
\end{array} \\
&
\end{array}
$$

The Noon to the Seniquartile of Mereary in mundo, direct.

$$
\begin{array}{ll}
\text { Are of direction to the sextile } \\
+1-6 t h \text { of Mercury's semi-nocturnal are } & \begin{array}{r}
8.44 \\
\\
\\
\text { Are of direction }
\end{array} \\
& 17.46
\end{array}
$$

The Sun to the Parallel of Venus in Mundo, converse motion.
As the N. II. T. of $\circ 9.14$, is to her distanec from the fourth house, 3.33, so is the $\odot$ 's N. H. 'I. 9. 35, to his secondary distanee from the fourth house, 3. 41.

$$
\begin{aligned}
& \text { Sun's primary distance from the } 1 . \mathrm{C} \\
& \text { Secondary distance } \\
& \qquad \begin{aligned}
22 . & 1 \\
& \\
& \text { Are of direction } \\
\hline & 18.20
\end{aligned}
\end{aligned}
$$

Ascendant to the Opposition and M. C. to the Quartile of Mars.

| Right ascension of Mars <br> + the semi-diurnal are of Mars | $\begin{array}{r} 232.18 \\ 56.55 \end{array}$ |
| :---: | :---: |
|  | 289. 13 |
| Right ascension of the medium ceeli |  |
| Are of direction |  |

Ascendant to the Sesquiquadrate and M. C. to the Semiquartile of Saturn.

Ascendant to the Opposition and M. C. to the Quartile of Hersehell.
Right ascension of Herschell 222. 28

+ the semi-diurnal are of Ierschell 67. 19

289. 17
—right ascension of the medium ceeli 271. 13

$$
\text { Are of direction 18. } 34
$$

Ascendant to the Semiquartile and M. C. to the Sesquiquadrate of Jupiter.
Are of direction ascendant to the sextile of $24 \quad 9.26$
$+1-6$ th of Jupiter's semi-nocturnal are 9.14
Are of direction 18.40
The Sun to the Semiquartile of Venus in the Zodiac.
Right ascension of the aspect . 135. 20
Ascensional diff. under the sun's pole 9.30

$$
\text { Are of direction } \quad 19 . \quad 9
$$

The Sun to the Quintile of Venus in Mundo, direct. Are of direction to the sextile . . . 12. 10 $+1-5$ th of the sextile, or ${ }_{3}^{2}$ of 9 's semi-noc. are 7.23

Arc of direction 19. 33
The Sun to the Semi-sextite of Mereury in the Zodine.
Right ascension of the aspect . . . 133. It
The Moon to the Semi-sextile of Mercury in the Zodiac.
Right ascension of the aspect with the latitude the moon will have there ..... 69. 5.4
Iscensional diflerence under the pole of the moon ..... 15. 23
Oblique asecusion of the aspect ..... 54. 31
Oblique ase. of the moon under her own pole ..... 34. 12
Are of direction ..... 20. 19The Sun to the Quartite of Herschell in the Zodiac.
Right ascension of the aspect ..... 137. 19Iscensional difference under the sun's pole . 9 . 9
Oblique descension of the aspect ..... 146. 28
Oblique descen. of the sun under lis own pole ..... 125. 41
Are of direction ..... 20. 47

## The Ascendant to the Quintile of Mereury.

Arc of direction to the quartile
10. 31
$+1-5$ th of Mercury's semi-noc. are
10. 50

Are of direction
21. 21

Aseendant to the Quartile and M. C. to the Opposition of the Sun.

$$
\begin{aligned}
& \text { Right aseension of the sun 113. } 14 \\
& \text { - R. A. of the Imum coeli 91. } 13 \\
& \text { Arc of direction } \quad 22.1
\end{aligned}
$$

The Sun to the Quartile of the Moon in the Zodiac. Right ascension of the aspect . 139. 5 Aseensional diff. under the sun's pole 9. 3

Oblique desension of the aspect . 148. 8 O. D. of the sun under his own pole 125.41

$$
\text { Arc of direction } 22.27
$$

The Moon to the Quintile of Jupiter in Mundo, converse.
First obtain the are of direction to the Quartile, thus:As $\mu$ 's N. H. 'I'. 9. 14, is to his distance from the cusp of the third, 9.26 , so is the D's D. H. T. 17.57, to her secondary distance from the twelfth house, 18. 20.

Primary dist. of the moon from the twelfth 62. 23
Sceondary distanee
18. 20

Arc of direction to the quartile 44. 3

- 1-5th of the moon's scmi-diurnal are 21. 33

Arc of dir. of the moon to the quintile of Jupiter 22. 30
The Moon to the Trine of the Sun in Mundo, converse.
As the $\odot$ 's N. H. T. 9.35 , is to his distance from the fifth house, 2. 51, so is the D's N. II. T. 12. 3, to her secondary distance from the ascendant, 3. 35.

Primary distanee of the Moon . . 26. 29
Secondary distance . . . 3.35
Are of direction 22. 54

The Sinn to the Trine of Mars in Mundo, converse.
Is the D. H. T. of Mars, 9. 29 : his distance from the Sth honse S8', so is the Sun's N. II. T. 9. 3.), to his secondary distance from the fth house ${ }^{5} 9$ '.

| Primary distance of the Sma . . 22. 1 Scondary distance$0.59$ |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  | Are | 23. |

The Sun to the Zodineal l'arallel of Ilersehell.
The Sun meets the dec. of 1115.59 in $\Omega$ 12. 49 .
Right aseension of the parallel . 135. 18
Asc. diff. under the Sun's pole . 14. 16

Ascendant to the Semiquartile and M. C. to the Sesquiquadrate of Venus.

Are of thecetion ase. to the sextile of Venus 14. 55

+ 1-6th of Venus's seminocturnal are 9.14
Are of dircetion 9.4 .9

The Sun to the Quartile of Saturn in Mundo, direct motion.
As the Sun's N. II. T. 9. 35, is to his distanee from the ith house, 2. 51, so is Saturn's D. H. T. 9. 32, to his secondary distanee from the 8th house, 2. 50.

| Primary distance of Saturn from the 8th | 27. 20 |
| :---: | :---: |
| Secondary distance | 2. 50 |
| Arc of direction | 24.30 |
| Or thus-Arc of direction to the trine | 5. 25 |
| + $\frac{1}{3}$ of Saturn's scmi-diurnal are | 19. 5 |
| Arc of direction $\odot$ to the $\square$ of $\mathrm{h}_{2}$ | 24.30 |

The Sun to the Quartile of Jupiter in Mundo, direct.

| Arc of dircction to the sextilc |
| :--- |
| $+\frac{1}{3}$ of Jupiter's seminocturnal are |

Arc of direction required | 6. 41 |
| ---: |
| 18. 29 |

The Sun to the Trine of Herschcll in Mundo, converse.
As Herschcl's D. H. T. 11. 13, is to his distance from the 8th house, 3. 52 , so is the Sun's N. H. T. 9. 35, to his secondary distance from the 4 th housc, 3.5 .

Primary distance of the Sun from the I. C. $\begin{array}{r}22.1 \\ \text { Secondary distance } \\ \\ \text { Are of direction } \\ \hline\end{array} \frac{25.5}{25.6}$

The Sun to the Conjunction of Venus in Mundo, converse.
As Venus's N. H. T. 9. 14, is to her distance from the 3rd housc, 14. 55 , so is the Sun's N. H. T. 9. 35, to his secondary distance from the 3rd house, 15. 46.

Primary distance of the Sun from the 3rd 41.11
Secondary distance
15. 46

Arc of direction 25.25

The Moon to the Opposition of Saturn in Mundo, direct.
As the Moon's N. H. 'T. 12.3, is to her distance from the ?nd house, 2. 23, so is Saturn's diurnal II. T. 9. 32, to his secondary distance from the Sth loouse, 1. 53.

$$
\begin{aligned}
& \text { Primary distance of Saturn from the Sth } 27.39 \\
& \text { Sccondary distance . . } 1.53 \\
& \text { Are of direction 25. } 46
\end{aligned}
$$

The Sun to the Sextile of Mercury in Mundo, direct.
As the Sun's N. H. T. 9.35 , is to his distance from the
.th house, 2. il, so is Mercury's N. H. 'T. 9. 2, to his
sccondary distance from the 3rd house, 2. 41.

The Moon to the Conjunction of Jupiter in Mundo, direct motion.

| Are of direction to the semiscxtile | 7.36 |
| ---: | ---: |
| $+\frac{1}{3}$ of Jupiter's seminocturnal are | $18 \quad 29$ |
| Are of direction | 26.5 |
|  |  |

The Sun to the Trine of Saturn in the Zodiac.
Right ascension of the aspect ; 143. 47
Ascensional difference under the Sun's pole 7.58
Oblique descension of the aspect 151.44
0. D. of the Sun under his own pole 125.41

Arc of direction 26. 3

Aseendant to the Coujunetion and M. C. to the Quartile of the Moon.

| Right ascension of the Moon <br> + The Moon's seminocturnal are | $\begin{aligned} & 45.25 \\ & 72.17 \end{aligned}$ |
| :---: | :---: |
|  | 117.42 |
| - R. A. of the Imum eorli | 91.13 |
| Are of di | 26. 29 |

The Moon to the Conjunetion of Jupiter in the Zodiac.

$$
\text { Right ascension of Jupiter } \quad 82.10
$$

- Asc. diff. of 22 under the Moon's pole 21.16
O. A. of Jupiter under the Moon's pole 60. 54
- O. A. of the Moon under her own pole 34. 12

Arc of direetion 20.42
M. C. to the Sextile of the Planet Saturn.

> Are of direction to the semiquartile 18. 7
> $+1-6$ th of Saturn's semidiurnal are
> 9. 32
> Arc of dircetion 27.39

The Sun to the Sextile of Jupiter in the Zodiac.
Right aseension of the aspect . 145. 9

+ Aseensional diff. under the Sun's pole 7.42
Oblique deseension of the aspeet 152. 51
- O. D. of the Sun under his own pole 125.41

Are of direction 27.10

Mediunn Ceeli to the Trine of Jupiter.
Are of direction to the sesquiquadrate 18.40
+1 -6th of Jupiter's seminocturnal are
9. 14

Arc of dircetion 27. 54

Ascendant to the Sextile of Mercury.
Are of direction to the quartile
10.31
$+\frac{1}{3}$ of Mereury's seminocturnal are
18. 3

Are of direction 28.3 .4

The Sun to the Semiquartile of Mercury in the Zodiac.
Right arceusion of the aspect 148.2
Ascensional diff. under the pole of the $\odot \quad 7.8$
Oblique descension of the aspect 155. 10
O. 1). of the Sun under lis own pole 195. 41

Are of clirection $\quad 29.29$

The Mon to the Semiquartile of the Sun in Mundo, by direet motion.
Are of direction to the sextile . 207
+1 -Gth of the Sun's seminocturnal are $\quad 9.35$
Are of direction 29.42

The Sun to the Quartile of Mars in the Zodiae.
Right asceusion of the aspect . 147.43
Asc. diff. under the pole of the Sun 7.12
Oblique deseensiou of the aspect 154.55
O. D. of the Sun under his own pole 125.41

Arc of direction

The Moon to the Biquintile of Herschell in the Zodiac.
Right ascension of the aspect with the
lat. the Moon will have in that place 80.24
Asc. diff. taken under the Moon's pole 16.16
Oblique ascension of the aspect . 64. 8
0 . A. of the Moon under her own pole 34.12
Arc of direction 29.56

The Moon to the Opposition of Saturn in the Zodiac.

| Right ascension of the Opposition <br> Asc. diff. under the Moon's pole |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Oblique ascension of the aspect <br> O. A. of the Moon as before |  |  |  |  |
| Arc of dircction |  |  |  | 80.58 <br> 16.22 |

The Sun to the Sextile of Venus in the Zodiac.
Right asc. of the aspect without lat. 150.2
Asc. diff. of ditto under the Sun's pole 6. 44
Oblique descension of the aspect $\quad 156.46$
O. D. of the Sun under his own pole 125. 41

Arc of direction 31. 5
The Moon to the Semisextile of the Sun in the Zodiac.

| Right ascension of the aspect | 81. 4 |
| :---: | :---: |
| Asc. diff. taken under the Moon's pole | 16.23 |
| Oblique ascension of the aspect | 64.41 |
| 0 . A. of the Moon under her own pole | 34. 12 |
| Arc of direction | 30. 29 |

The Sun to the Quartile of Yenus in Mundo, dircet motion.

| Are of dircetion to the sextile |  |
| :--- | :--- |
| $+\frac{1}{3}$ of Venus's scminocturnal are | 12.10 |
|  | 18.28 <br>  <br> Are of dircction |

The Sun to the Mundanc Parallel of Mercury, direct motion.
As the Sun's N. I. T. 9.35 : his distance from the Imum coeli, 2:. 1, so is Mcrcury's N. H. T. 9. 2, to his sccondary distance from the 4 th housc, 20.45.

Primary distance of $\bigvee$ from the 4 th $\quad 10.31$
Secondary distance
Arc of dircction 31.16

The Moon to the Conjunction of Vcuus in Mundo, dircet.

| Are of direction to the semisextile | 13.5 |
| :--- | ---: |
| $+\frac{1}{3}$ of Venus's seminocturnal are | 18.28 |
|  | Are of direction |
|  |  |

The Moon to the Conjunction of Venus in the Zodiac.

> Right asccusion of Vcnus

Asc. diff. of Venus under the Moon's pole 21.17
Oblique ascension of Venus
66.23
O. A. of the Moon under her orn pole 34.12

Arc of direction 32. 11

The Sun to the Semiquartile of Mars in Mundo, dircet motion.
As the Sun's N. H. T. 9. 35, is to his distance from the cusp of the 5th, 2. 51, so is the N. H. T. of Mars, 20.31, to his sccondary distance from the middle of the 6th house, 6. 6.

Primary distance of Mars from the mid. of the 6th 38.31 Secondary distance

Arc of direction 32.25

| Arc of direction to the trinc | 23. 0 |
| :---: | :---: |
| + 1-6th of the Sun's seminocturnal arc | 9.35 |
| Arc of direction | 32.35 |

Ascendant to the Parallel of the Sun's Declination. Thc parallel falls in $I 8$ 8. 31 .

| Right ascension of a 8.31 | 66. 47 |
| :---: | :---: |
| Asc. diff. under the pole of the asc. | 32. 30 |
| Oblique ascension of the parallel | 34. 17 |
| 0 . A. of the ascendant | 1. 13 |
| Are of direction | 33. 4 |

The Sun to the Quintile of Mercury, direct motion. Arc of direction to the sestile . 25.53 $+1-5$ th of the sextilc (i. e. $\frac{2}{3}$ of the seminocturnal arc)
7.13

Arc of direction 33.6
The proportion is thus: $\frac{2}{3}$ of Mercury's seminocturnal arc is $36.6,1-5$ th of which is 7.13 , to be added to the sextile as above.

The Sun to the Mundane Parallel of Mercury, by converse motion.
As Mercury's N. I. T. 9. 2, is to his distance from the lmum cocli, 10.31, so is the Sun's N. H. T. 9. 35, to his secondary distance from the 4th house, 11.9.

| Primary distance of | Sun from tlie 4 th | 22. |
| :---: | :---: | :---: |
| Sceondary distance |  |  |
|  | Are of dircetion |  |


| Medium Cecli to the Trine of Yenus. |  |
| :---: | :---: |
| are of direction to the sesquiquadrate | 24. 9 |
| + 1-6th of Tenus's seminoeturnal are | 9.14 |
| Are of dircetion | 33. 23 |

Asecnlant to the Quintile of the Sun. are of direction to the quartile 22.1 $+1-5$ th of the Sun's nocturnal are 11.30

$$
\text { Are of direction } \quad 33.31
$$

The Moon to the Sesquiquadrate of Mersehell in Mundo, by direst motion.
As the Moon's N. H. T. 12. 3, is to her distanee from the '2nd loonse, ?. 23, so is H's N. H. 'T. 18. 47, to his secondary distauce from the middle of the 6th house, (which print is in sesquiqualrate with the eusp of the 2nd,) 3. 43 .

Primary distance of 1 d from the mid. of the 6 th 37.20
Sceondary distance
Are of direction
33. 37

Asecndant to the Parallel of Saturn's Declination. This parallel falls in $4,9.32$.
Right asecnsion of the $\odot$ in 11 9. 32 67.52
Asc. diff. under pole of the horoseope 32.46
Oblique aseension of the parallel
35. 6
O. A. of the horoscope or ascendant

1. 13

Are of dircetion
33.53

The Sun to the Quintile of Jupiter in the Zodiae.

| Right ascension of the aspeet | 156. 39 |
| :---: | :---: |
| Ascensional diff. under the $\bigcirc$ 's pole | 5.21 |
| Oblique deseension of the aspect | 162. 0 |
| O. D. of the $\odot$ under his own pole | 125. 41 |
| Are of direction | 36. 19 |

The Sun to the Zodiacal Parallel of the Moon.
The Sun meets the Moon's deelination in $\Omega 26.24$.
Right aseension of the parallel $\quad 148.39$
Ase. diff. under the $\bigcirc$ 's pole . 11.13
Oblique deseension of the aspeet $\quad 159.52$
0 . D. of the $\odot$ under his own pole 125.41
Are of direetion 34.11

The Moon to the Sesquiquadrate of Mars in mundo, direet motion.
As the Moon's N. II. T. 12. 3, is to her distance from the eusp of the second, 2. 23, so is Mars's N. H.T. 20.31, to his sceondary distanee from the middle of the 6th house, 4. 4.

Primary distanee of $\delta$ from the mid. of the 6th 38.31
Secondary distance
4. 4

Are of direction 34.27
The Sun to the Sesquiquadrate of Herschell in Mundo, eonverse motion.
Are of direction to the trine . 25.6
$+1-6$ th of the $\odot$ 's seminocturual are 9. 35

Are of direction
34.41

Asceudant to the Parallel of Mars's Dechination.
The Sun meets the Dec. of Mars in II, 10. 40.

| Right ascensiou of L 10.40 | 69. 4 |
| :---: | :---: |
| Aseen. diff. under the Suu's pole | 33. 5 |
| Oblique ascension of the parallel | 35. 59 |
| O. A of the asceudaut | 1. 13 |
| Are of dircetion | 34. 46 |

The Sun to the Quintile of Herschell in the Zodiac.
Right ase. of the aspeet withont lat. 154. 48
Asc. diff. under the pole of the Sun
5. 44

Oblique descension of the aspect 160.32
O. D. of the Sun uuder his own pole 12: 41

Are of dircetion 3.4.51

The Sun to the Quintile of Saturn iu Mundo, direct.


Ascendant to the Semiquartile and M. C. to the Scequiquadrate of Mercury.
Are of direction Asc. to the $*$ of $\bigvee \quad 28.34$

+ 1-6th of Mercury's seminocturnal are 9. 2
Are of direction 37.36

The Moon to the Sesquiquadrate of the Sun in Mundo, couverse motion.

As the $\odot$ 's N. H. T. 9.35 , is to his distance from the cusp of the 5th, 2. 51, so is the Moou's diurnal horary
time, 17.57, to her seeondary distance from the middle of the 12 th house, 5. 20.

| Primary distanee of the D from | e mid. of the 12 | 44. 26 |
| :---: | :---: | :---: |
| Secondary distanee | . . | 5. 20 |
|  | Are of direction | 39. 6 |

The Moon to the Sesquiquadrate of Hersehell in the Zodiac.

| Right ascension of the aspect | 89.49 |
| :--- | :--- |
| Asc. diff. under the Moon's pole | 16.44 |
|  |  |
| Oblique ascension of the aspect | 73.5 |
| O. A. of the $D$ under her own polc | 34.12 |
| Arc of direetion | -38.53 |

The Sun to the Quintile of Vcnus in the Zodiae.

| Right aseension of the aspect | 161.24 |
| :--- | ---: |
| Ase. diff. under the Sun's pole | 4.17 |
|  |  |
| Oblique aseension of the quintile | 16.3 .41 |
| O. A. of the $\odot$ under his own pole | 125.41 |
| Are of direction |  |

Ascendant to the Parallel of Jupitcr's Declination.

$$
\text { It falls in } \mathrm{a} 17.10
$$

Right ascension of the parallel 76. 3
Asc. diff. under the pole of the horoscope 34. 34
Oblique asc. of the parallel 41. 29
0 . A. of the ascendant 1.13
Arc of direetion $\quad 40.16$

Asecudant to the Parallel of Tenus's Declination.
Right asceusion of 15, 17. 20, the place where the parallel falls
76.14

Ase. diff. moder the pole of the aseendant 34.36
Oblique aseension of the parallel 41.38
0 . A. of the ascendant 1.13
Are of direction 40. 25

When all these aspects are colleeted in suecession, they will appear at one riew as in this

## TABLI: OF DIRECTIONS.

D. M.
The Moon to the $\Delta$ of the Sun in mundo, direet ..... 0. 57
Sun to the semiquartile of 2 in mundo, cone. ..... 2. 39
Ascendant to the trine of the Sun ..... 2. 51
Moon to the opposition of $\delta$ in mundo, conv. ..... 3. 37
Sun to the trine of Mars in the zodiae ..... 3. 44
Moon to the semiquartile of $O$ in mundo, direet ..... 3. 51
Moon to the sextile of the Sum in the zodiae ..... 3. i2
Monn to the sesquiquad. of 1 , in mume, conv. ..... 4. 0
Sun to the resquiquad. of $w$ in mmido, cons. ..... 4. 8
Moon to the semi-sextile of 11 in the zodiae ..... 4. 56
Sun to the trine of Saturn in mundo, direct ..... 5. 25
sun to the sextile of Jupiter in mumdo, direet ..... 6. 41
Sun to the quintile of the Moon in the zodiae ..... 6. 42
Moon to the sextile of Venns in mundo, cons. ..... 6. 59
Moon to the opposition of Mars in the zodiae ..... 7. 6
Moon to the semiquartile of $Y$ in the zodiae ..... 7. 19
Doon to the semi-sextile of $\geq$ in mumdo, direet ..... 7. 36
Ascendant to the trine of Saturn ..... 8. 3i
Moon to the sextile of $\bigvee$ in mundo, direct ..... 8. 44
Moon to the semi-sextile of Yenus in the zodiae ..... 9. 4
Aseendant to the sextile of Jupiter . ..... 9. 26
Ascendant to the quartile of Mercury . ..... 10. 31
Medium eceli to the opposition of Mereury ..... 10. 31
Sun to the conjunction of Mercury in mundo, converse motion ..... 10. 51
Ar. Bl
The Moon to the quintile of Venus in mundo, conv. ..... 11.48
Sun to the mundane parallel of Jupiter, direct ..... 12. 10
Sun to the sextile of Venus in mundo, direct ..... 12. 10
Ascendant to the parallel of the Moon's deelin. ..... 12. 25
Moon to the quartile of $\zeta$ in mundo, converse ..... 12. 27
Noon to the quintile of the $\odot$ in mundo, direet ..... 12. 27
Sun to the mundane parallel of Jupiter, conv. ..... 12. 37
Moon to the semi-sextile of 9 in mundo, direct ..... 13. 5
Moon to the zodiacal parallel of Hersehell ..... 13. 18
Sun to the sesquiquad. of Saturn in the zodiae ..... 13. 38
Sun to the quintile of Jupiter in mundo, direet ..... 14. 5
Moon to the sextile of Jupiter in mundo, conv. ..... 14. 10
Sun to the semiquart. of Jupiter in the zodiac ..... 14. 19
Aseendant to the sextile of Venus ..... 14. 55
Sun to the sextile of Mars in mundo, direet ..... 15. 11
Sun to the sextile of B in mundo, direct . ..... 15. 14
Moon to the trine of Saturn in mundo, conv. ..... 16.
Sun to the rapt parallel of Mercury ..... 16. 6
Moon to the semiquart. of the $\odot$ in the zodiae ..... 16. 30
Sun to the semiquart. of $\oint$ in mundo, direct ..... 16. 51
Ascendant to the parallel of lIersehell's dee. ..... 17.16
Sun to the semi-sextile of Mereury in the zodiae ..... 17. 23
Sun to the mundane parallel of Veuus, direet ..... 17. 40
Moon to the semiquart. of $\widehat{\zeta}$ in mundo, direet ..... 17.46
Ascendant to the opposition of Mars ..... 18. 0
Medium cœli to the quartile of Mars ..... 18. 0
Ascendant to the sesquiquadrate of Saturn ..... 18. 7
Medium coli to the semiquartile of Saturn ..... 18. 7
Sun to the mundane parallel of Venus, conv. ..... 18. 20
Ascendant to the opposition of Herschell ..... 18. 34
Medium couli to the quartile of Herschell ..... 18. 34
Ascendant to the semiquartile of Jupiter ..... 18. 40
Medium cocli to the sesquiquadrate of Jupiter ..... 18. 40
Sun to the semiquartile of Venus in the zodiac ..... 19. 9
Sun to the quintile of Venus in mundo, direct ..... 19. 33
Sun to the sextile of the Moon in mundo, direct ..... 20. 7
Moon to the semi-sextile of $\bigvee$ in the zodiae ..... 20. 19
Sun to the quartile of H in the zodiac ..... 20.47
Aseendant to the quintile of Mercury ..... 21. 21
Ascendant to the quartile of the Sun ..... 22. 1
Medium eccli to the opposition of the Sun ..... 22. 1
D. 11 .
The Sum to the quartile of the Moon in the zodiac 20.27
Moon to the quintile of Jupiter in mundo, conv. 22. 30
Moon to the trine of the Smin mundo, conv. 22. 54
Sun to the trine of Mars in mundo, converse 23 . 0
Sun to the zodiacal parallel of Herschell . 23. 53
Ascendant to the semiquartile of Vems - 24. 9
Medinm colli to the sesquiquadrate of Vemus 2-1. 9
Sun to the quartile of Saturn in mundo, direct 24. 30
Sun to the trine of II in mmedo, converse . 25. 6
Sun to the quartile of Jupiter in mundo, direet 2.5 .10
Sun to the $\delta$ of Venus in mundo, conserse 25.25
Moon to the 8 of satum in mundo, direct . 25. 46
Sun to the sextile of Mereury in mumdo, direct 2.5 .53
Sun to the trine of Saturn in the zodiae 26.3
Moon to the of of Jupiter in mundo, direct 26 . 5
Ascendant to the eonjunction of the Moon 26. 29
Medium colit to the quartile of the Moon. 26. 29
Moon to the conjunction of $\geq$ in the zodiae 26.42
Sun to the sextile of Jupiter in the zodiae 27.10
Medium coli to the sextile of Saturn 27.39
Medium colli to the trine of Jupiter 27.54
Aseendant to the sextile of Mereury 28.34
Sun to the quartile of Mars in the zodiae 29.14
Sun to the semiquartile of $Y$ in the zodiac 29.99
3 to the semiquart. of the $\odot$ in mmalo, direct 29.42
Moon to the biquintile of $\mathrm{H}_{2}$ in the zodine 29.56
Moon to the opposition of Satum in the zodiae 30. 2-1
Nown to the semi-sextile of the $(-$ in the zodiae 30.29
Sun to the quartile of Venus in mundo, direct 30.38
Sun to the sextile of Venus in the zodiae . 31. 5
Sun to the parallel of Mereury in mundo, direct 31. 1f
Sun to the conjune. of Jupiter in mundo, conv. 31. 24
Moon to the conjune. of Venus in mundo, direet 31.33
Moon to the conjune. of Venns in the zotliac 32. 11
Sun to the semiquart. of Mars in mundo, lirect 32. 25
Sun to the sesquiquad. of of mmendo, cons. 32.35
Sun to the 8 of Saturn in mundo, converse . 32. 53
Aseendant to the parallel of the $\odot$ 's declination 33. 4
Sun to the quintile of Merenry in mundo, direet 33. G
Sun to the parallel of Merenry in mundo, conv. 33. 10
Moon to the quartile of Venus in mundo, conv. 33. 21
D. M.
The Medium eexli to the trine of Venus ..... 33. 23
Ascendant to the quintile of the Sun ..... 33. 31
Moon to the sesquiquad. of 4 in mundo, direct ..... 33. 37
Ascendant to the parallel of Saturn's deelin. . ..... 33. 53
Sun to the zodaical parallel of the Moon ..... 34. 11
Moon to the sesquiquad. of of in murdo, direct ..... 34. 27 ..... 34. 27
Sun to the sesquiquad. of H in mundo, conv. ..... 34.41
Ascendant to the parallel of Mars' declination ..... 34. 46
Sun to the quintile of 18 in the zodiac ..... 34. 51
Sun to the quintile of Saturn in mundo, direct ..... 35. 57
Sun to the quintile of Jupiter in the zodiae ..... 36. 19
Ascendant to the semiquartile of Mercury ..... 37.36
Moon to the sesquiquadrate of Hersehell in the zodiac ..... 38. 53
Moon to the sesquiquad. of the Sun in mundo, converse ..... 39. 6
Suu to the quintile of Venus in the zodiae ..... 40. 0
Ascendant to the parallel of Jupiter's declin. ..... 40. 16
Ascendant to the parallel of Venus's declination ..... 40. 25
These directions might be continued to sixty or seventydegrees, as in the first nativity, but the abose are deemedsufficiently numerous for our present purpose. Their eor-responding effects will be described under the article"Effects of Directions."

I flatter myself that I have now given the elements of this seience in the most complete and practical manner. The ingenious and attentive student will find no diffieulty in bringing' up all kinds of direetions trigonometrically; but to thosed a possess a celestial globe the following problem will bé, aeceptable, as zodiaeal directions may be performed with much aceuracy and great case by its assistanec. The precepts for erecting a theme of heaven by this method have already been giren.

To direct a significator without latitude to any conjunction or aspect in the zodiac.

Rule.-Elevate the pole of the globe an equal number of degrees, \&e. to the pole of the signifieator. Bring the place of the signifieator in the eeliptic to the horizon; the degrees and minutes of the equinoctial intereepted by the
horizon nill give the $\mathrm{O} . \mathrm{A}$. or $\mathrm{O} . \mathrm{D}$. of the signifientor mider his own pole.

Find the place of the aspect on the celiptic, and ascertain its O. I. or O. D. muder the same eleration as before; subtract the lesser from the greater, the remainder will be the are of direction.
N. 3.-A significator with latitude may be directed m the same manner, ascertaining its true place by setting of its latitude, north or sonth of the ecliptic, according as its latitude is $N$. or $S$. and hence its truc O . A. or O . D.

Those who choose to direct by converse motion also, may find the O. A. or O. J). Ne. nuder the pole of the promittor insteal of that of the significator, and procecd in every other respect as before.

If the stulent choose to use tables of right aseensions, dechinations, de. instead of working by those of logarithms (which, however, I shonld not adrise him to do), he will tind Xlr. Wilson's a complete set.

But ufter a little practice the calculations may be made by logarithms with ecpually as much speed, and infinitely more correctutss, as the tables themeclues are constructed by them. I always use this method, and must say that equally as much time is lost in making the necessary proportions from the tables, as while the whole operation might be more accurately performed by the logarithms.

## Rules for Describing the lersonal Appearance.

Observe the sign aseending, and the planets in partile aspect thereto, a judicions combination of whose testimonies will invariably point ont the formation of the body; but when many planets aspect the ascendant this camot be detcrmined, beenuse of the impossibility of combining such a mumber of conflicting testimonics.

## The Mind and Dispasition.

Observe the places of Mereury and the Moon mith the plancts aspected by them; also those planets near the cusp of the ascendant and mid-heaven, a portion of whose quali-
ties the mind of the native will always imbibe. The nature of the mental freulties may be always elearly determined, beeause the powers of the mind may be so vaied as to reeeive very different, and sometimes very opposite qualifieations.

Thus an individual may be at onee frugal and generous, addicted to sensual enjoyments, but at the same time possess abilities to pursue with sueeess the most abstruse studies; may have a genius for poetry and the fine arts, and also to explore the decpest areana of philosophy and seience. The student must, nevertheless, be eareful to observe the configurations of the strongest planets, and those whose aspeets are most partile, for of the nature of these will the native's mind most partieipate.

## On Life and Ilealth.

The strength of the Sun, Moon, and Aseendant, must be earefully notieed, but more espeeially the hyleg; for if the hyleg is afflieted at birth, the health of the uative will always be deliente, and the diseases whieh he will be most subject to will always be of the nature of the aftlieting planets. But although the apheta should be moderately well fortified, and yet the other two lylegineal points afflieted, the native will never enjoy any good health or live to a great age. The student will see the applieation of these rules in the sueeceding nativities, a eareful study of whieh will cuable him to give a true judgment on any geniture whatever.

The henlth and fortune in life are prineipally ruled by the operating direetions; but it must be borne in mind, that where a mativity is uaturally strong, evil direetions will have less influenee, and benevolent dircetions greater power than if the nativity were weak; and when it is naturally weak and afllieted, the configurations of the eelestial orbs will operate exaetly in a contrary manner.

Evil dircetions to the hyleg will always eause illness, but a train of malific direetions is required to produee death if the nativity be strong; but death may ensue when the hyleg is afflieted by one or two direetions only, if the other aphetical points be vitiated at the same time; never-
theless reason and experience will be the best guides in these eases, for without a portion of both no artist mill be eapable of giving any thing like a correct judgment.

Rules for Determining the Particular Qualities of the Mind.
. Merury and the Moon principally govern the mind and disposition, but Merenry more especially governs the rational powers; and according to the qualities of the signs in which these two planets are placed at the moment of hirth, and the nature of the planets' aspecting them, the mimel will be vigorons or weak, vieious or amialle, \&e.

The general qualities of the zodineal signs and erratie orbs are as follow:-
" $r \approx \Omega$ and $r$, when oecnpied by the Moon and Mercury, these planets not being aspected by any other, render the mind active, shap, ingenions, lively, ambitious, and persevering.
if It $f$ and $\therefore$, make men subtile, crafty, versatile, repining, unstable, deccitful, and superficial charneters, but of intense, acute, and powerful feclings.
is It and $=\cdots$, prodnce plain, inflexible, firm, obstinate, patient, laborions, contentions, malicions, ambitions, and thrity persons."

When the Moon and Mereury are in partile aspect with other planets, the mind, as before observed, invariably partakes of the qualities denoted by suel planets. Thins:-
" Jlerschell eauses strangeness, waywarlness, romantie ideas, eceentricity, a perpetual wish for the discovery of scerets in science and art, a love of things out of the track of custom, as antiquities and mystic learning, or enthnsinstic reveries.
"Saturn-fear, melancholy, slowness, labour, solitariness, and a propensity to weeping.
"Jupiter-honesty, candour, magnanimity, security, benevolence, good-nature, and confidenec.
" Mars-quarrels, anger, raslmess, desperntion, conrage, propensity to war and strife, and all manner of violence.
"Venus-beauty, delicaey; love of poetry, musie, or the
fine arts, daneing, immoderate amorous desires, and good taste, with eleganee in erery undertaking.
" Mereury, learning, eloquenee, rit, and judgment, seience and knowledge of every kind, genius, and aetivity-
" The Sun, ambition, enterprize, thirst for fame, a desire to waste money and for vain-glory in every possible way.
" The Moon, elangreableness, eraft, desire for traselling and euriosities, aetivity, and industry.
"In these eases, also, the Moon or Mereury in aspeet to Hersehell never fails to produce astrologers and antiquaries; Mercury in aspeet to Mars, makes surgeons and warriors; Venus and Mereury in aspeet, form the genius whenee arises poets, players, and musieians; Mars and the Moon in aspect, give satirists and contenders against publie opinion; Jupiter and Mereury eonduce to the study of the law or divinity, and Saturn joining therein gives a fondness for mystic religion, seets, and heresies."
The above eoncise and excellent rules, although to be found seattered in various other authors, were never colleeted in so judieious a style as that in whieh they now appear from Raphael's Manual. This work contains, among some puerile absurdities, mueh valuable matter, and is the only really seientifie work eompiled by Raphael, "The Astrologer of the Nineteenth Century," and all his other productions are extremely well calculated to please the publie taste and interest the general reader, but to the man of seience offer few adrantages.

I have always observed that Mereury in zodiaeal $*$ or $\Delta$ with the Moon, is the certain tokeu of a powerful intelleet and great genius.

## On the Effects of Directions; and, first, <br> To find the IIyleg, or Giver of Life.

The aphetieal, or hylegiaeal plaees, are the whole of the first, seventh, ninth, and ten houses, and that half of the eleventh house nearest the mid-hearen.

If, by day, the Sun be in one of these plaees, or in the eighth house, within five degrees of the eusp of the ninth, he is the giver of life. By night, the Moon, in the same
situation, elaims that office, and the Sun, not being man aphetical place by day, then the dloon will become the giver of life, if within the hylegiacal limits; but in case neither are so posited, the ascendant must be chosen as apheta, whether the nativity be dimenal or noeturmal.
N. B. The hylegiacal limits of the ascendant are from 5 degrees above to 05 degrees below its chisp, so that the Sun or Moon being more than 9.5 degrees below the eusp, although really in the ascendant, cannot be hyleg. The lylegiacal limits of the seventl are from 25 degrees above the eusp, to 5 degrees below it.

## The Conjunction

Of $\mathfrak{e}$ to the horoseope eanses sickness, coughs, catarrhs, agnes, quartain and tertain, lead-uche, melancholy, fear, consumptions, dulness, idleness, weakness, lassitude, illlumour, and a lethargic drowsiness; and danger, they say, of drowning, if the sign be watery, and a siolent fixed star near the place.

Of $2 \rightarrow$, good liealth and a happy elicerful disposition; riches, favour, credit, and prosperity, preferment, and, if by direction, marriage. lie is also said, if peregrine,* and in a tiery sign, to cause a slight fever; in a watery or airy sign, the measles or small-pox; and in an carthy sign, the scurty: but thece disasters are always accompanied by some benefit, sometimes an inheritance or gift, children, de.

Of $\delta$, danger, by fever, small-pox, measles, madness, cruptions of all kinds, pestilence, \&c.; and in directions, danger by robbers, horses, iron, fire, or fire-arms, stones thrown ; if in airy signs, by falls; if in fiery signs, by being burnt alive. It also causes imprisonment, or danger to those who are prisonere, murder, hloody flux, if in $\exists$ or m , and inflammation of the pleura, intestines, S.e.

Of the $\odot$, it denotes dignity, office, preferment, with much anxiety, disease, pains in the lead, and hurts in the right eyc. In airy signs, blights in the eye ; in fiery signs, ferer or ophthalimia; in watery signs, mueh rheum; in carthy signs, dim eyes and humour in the head. They

[^5]also say it causes all the aetions in a man's life to be made public, makes him waste his substance, and quarrel with his brethren and sisters.

Of ㄱ, causes much happiness, eourtship, marriage, dress, dancing, and dissipation, children and gifts. If she be in a watery sign, the native, in such a direction, is apt, it is said, to turn drunkard, spendthrift, and debauched, and is afflicted with suel diseases as are the natural consequenees of such pursuits.
 science, merchandise and various employments. Directions of this kind generally bring the natire to some new kind of study, employment, or profession, or improve the old one.

Of the $D$, if she was weak in the radix, or afflieted, it causes trouble both in body and mind, threatens dromning, and whether fortunatc or unfortunate, causes sudden changes to good or evil, sometimes marriage, joumeys, preferment, death of the mother, cholic, and other lunar diseases.

The $\delta$ of b with the mid-heaven, causes disgrace and hatred of superiors, destroys preferment, and so ritiates the native as to render him indolent, foolish, obstinate, and mean, wholly undeserving of any one's regard, and accordingly he is ruined, and falls to rise no more. Sometimes it denotes an ignominious death, if there be ssmptoms of violent death in the figure, and it always renders him an objeet of latred and eontempt among his inferiors.
Of 4 , gives great honour, profit, and preferment, favour of the great, and extensivc patronage. It benefits every one aeeording to their capacity and condition in life.
Of $\delta$, stirs np the resentment of the great, causes exile, imprisonment, hatred, secret injuries, dreadful losses by firc, thieves, treachery, and frand. Kings from this direction or position injure their subjeets, and are dethroned and murdered by them in return; it however gives military honours, with much anguish and trouble, and where an untimely end is threatened in the radix, this shews the time and quality of the death.

Of the $\odot$, gives great honour and dignity, favour of the great, high preferment, and endows the native with honour
and fidelits. It also renders the native proud and prodigal, and greatly expands his mind, endowing him with lotty conceptions and a spirit of enterprise. It also denutes the prosperity of the parents, particularly of the mother of the native, and is likewise the forerumer of her death.

Of 9 , checrfulness, joy, and mirth; anusements, marriare, honour, profit, gain, love, respect, and preferment.

Of $y$, fortune and snceess in dispatch of business, honour and profit by learning, sciences, or anything resulting from study and the use of letters, increase of business and fortune. Yonths become npprentices, or men set up in business, scholars take degrecs, \&e. It also eauses scandal and disgrace, according to the condition of $\Psi$.

Of the 2, much restlessness and bnsiness, with good or evil result, according to the condition of the Moon. Marriage or friend-hiy, with women, and auything signified hy the Moon in the radix is now bronght to perfection. Traselling, trade, ofliee, dignity, and their opposites.
The Sim to the of of h, trouble and sickness, disenses in the head, melancholy fears, ngnes, weakness in the eyes, hurts in the right cye by blows or falls, injury from great men of saturnine dispositions, who will injure the native's fortune and reputation, and canse him much unensiness. Great dangers in travelling by sea and land, and some say it denotes sickness and aflliction to the father.
Of 2 , health, pence, and plenty, preferment, honour, and favour of the great. In kingdoms, it denotes the renewing of treatics, peace, just government, and the clergy respectable.

Of z, acute disenses, fevers, head-aches, dim eyes or blindness, wounds in the face, burns, sealds, hurts by iron, inconstancy, an evil mind, both in the natire and those he has dealings with, injury by robbers or great men, mischicrous enemies, injuries by soldiers, mad dogs, horses, or ferocions animals or large cattle. If a violent death be in the nativity, it is then at hand. In moist sigus it is said to cnuse the bloody flur. To kings, it denotes murder, poison, treachery, and rebellion. In a martial nativity it gives preferment, and that generally to some post of danger.

Of 오, music, plays, merry-making, vencreal pleasures, courtship, marriage, and these crents will be good or evil,
as Venus is strong or weak in the radix. It gives increase of trade and property, and to kings it is said to denote marriage or preferment to their children. In nativities where Vcnus is peregrine, it is said to cause dreadful debauchery.

Of $\nsupseteq$, much business, mercantile enjoyments, literary undertakings, learning, literary contentions, embassies, danger of thievcs, propensity to travel, law-suits, quarrels, and preferment if the radix denote it. It also inclines the native to fresh studies and to be constant to none.

Of the $D$, sickness, pain of the head and stomach, grief, blindness especially if denoted by the radix. It inclines the native to travcl, prodigality, wastc, folly, rapinc and theft, and inconstancy. If the native marries on this direction, the wifc is proud and one that will usurp authority over him. It denotes journcys; and, if the Moon be strong, it may give preferment.
The $\delta$ of the $D$ with b causcs apoplexy, palsy, dropsy, gout, agucs, and fevcrs; false accusations, loss of substance, great anguish, fear, melancholy, sorrow, and affliction; loss of friends, dcceit, consumption, blindncss, or bad eyes, \&c.

With 4 gives health, honour and riches, prcferment, and success in all things.
With ơ', great sorrow, loss, and misfortunes, loss of sight, fevcrs, and eruptive diseases, siphilis, wounds, danger from furious beasts, bites of dogs, quarrels, murdcr, especially if Mars beanarcta,* and if the conjunction happen in Leoornear the Bull's Eye or Antares, the disease will be pestilential.

With the $\odot$, when the Moon is directed, it causes fever, (at which time they say the native will disclose all his former sccrcts) changes and unsettled life, great perplexity, bad eyes, also marriage. To kings it denotes success, to princes it shews honours or succession to the throne, and to mcrchants a decline in credit, but not bankruptcy.

With $ㅇ+$, it causcs joy and pleasure; and, if in a moist sigu, drunkenness and all kinds of amusements, good health, marriage, courtship, and gifts. To kings, peace at home and abroad.

With $\begin{array}{r}\text { gr, business, lying and dissimulation, eloquence, }\end{array}$ fraul, theft, lewdness, forgery, hard study, and success. To a king, it denotcs ncgociations and treatics.
*The destroyer of Life.

## The Sextile and Trine.

The horoscope, having the $*$ or $\Delta$ of $h$, denotes favour from old men, gain by agriculture, gardening, mines, collicries, and all things relative to the earth, legacies, and inheritance. It is said to be a good time to let lands or renew leases, build or speculate in saturnine employments.

Of 2 , great gain, riches, and honours, health and friendship.

Of $\delta$, martinl employments or excreises and preferment, also invention, impatienee, anger, and energy.

Of the $\mathcal{C}$, health, honour, profit, fricuds, and happiness.
Of 9 , pleasure, enjoyment, marriage, children, and good fortunc.

Of $\downarrow$, gain and preferment by study and learning, litemary enconrazement, \&e.

Of the 5 , much business, health, and contentment, marringe, journers, and children, partienlarly danghters.

The mid-henven to the $*$ or $\Delta$ of h , homonr and estem from old people, gravity and sobricty, eain by agriculture and other satnrnine professions. If Saturn be in Taurus or Capricorn it is all the better.

Of $\xlongequal[2]{ }$, the same as the conjunction.
Of $\delta$, dieposes the native to warlike exercises, riding, lumting, and gives preferment in war and gain by trade. To kings, it is a fortmate time to declare war.

Of the $\odot$, great lomours and dignities, bounties, gifts from the great, and every degree of suceess and happiness.

Of 9 , love of nomen, new dresses, furniture, armaments, Se.; health, marriage, children, and every degree of ficlicity.

Of $>$, renders the native learned, eloqnent, and fortunate in all merenrial undertakings.

Of the $D$, great riches and prosperity, marringe to a rich or poor woman, according to the strength of the Moon, journeys, estecm, and reputation.

The $\mathcal{C}$, haring the $*$ or $\Delta$ of $\mathfrak{r}$, denotes honour and profit from old men, makes the mative grave and severe, and like to gain wealth by linsbandry, building or an inheritance.

Of 2 , sonnd julgment, honour, profit, preferment, and male ehildren. Bnt, if Jupiter le not radically strong, the effect will be more weak and unarailing.

Of $\delta$, friendship of martial men, preferment in arms,
courage, magnanimity, military reputation, vietory, and travelling.
Of 9 , reputation, office, dignity, lore of women, marriage, children, health, ensy and elegant manners.

The $*$ of $\underset{\sim}{ }$, in direction, gives much business with, it is said, little profit, propensity to travelling with no good result, sehool or ehurch preferment, dealing in books, \&e.

Of the $D$, farour of great persons, many friends, a rich wife, and honourable or diplomatic employment.

The $D$ to the $*$ or $\Delta$ of F , great and valuable connections, gifts from old women, muel esteem and veneration, profit from dealing with old people or in saturnine commodities, as wool, lead, agricultural or horticultural productions, houses, \&e.
Of 2 , much the same as the $\delta$.
Of $\delta$, boldness, pride, hatred, vigilance, oppression, martial pursuits, hunting, and riding.

If ot be weak, he will drink, game, and waste his property. It generally shews increase of trade with suceess.

Of the $\odot$, honourable and profitable connections, marriage, traveling, much esteem, great suceess, and preferment.
Of 9 , pleasure and happiness, a good marriage, great favour with every one, and unbounded suceess if Venus be strong.
Of $\wp$, a propensity to learning, travelling, music, and oratory; it also denotes incessant action and a great propensity to trade.

## The Square and Opposition.

The horoseope to the $\square$ or 8 of $h_{2}$ brings disease, death, chronic diseases, mueh melancholy, fear, and nervous horrors, ruptures, flux, gout, cholie, fistulas, tumours in the legs, injuries in the privates, loss, disgrace, and ruin.

Of $\underset{4}{\boldsymbol{L}}$, distemper, law suits, enmity and treachery, but not attended with any material loss.

Of $\delta$, violent fevers by being overheated, sudden misfortune or death, falls, wounds, burnings, loss, false aceusations, \&e. In a fiery sign, it causes inflammations, boils, pestilent eruptions, \&e. While this direction lasts, persons should aroid all business or adventure as much as possible. In earthy signs it threatens murder, in airy signs violent
inflammations and cruptions, and in watery signs violent fluxes and drowning.

Of the $\odot$, diseases, ruin, sore eyes, oppression by grent men, imprisonment, slipwreck, \&e. The Quartile is not rechoned near so bad as the Opposition.

Of $ㅇ$, venereal disorders, lust, and prostitution, quarrels with and ruin by women, love, madness, jenlousy and cuckoldom.

Of $\}$, rain and expensire attempts at learning to no purpose, aversion to study; restlessuess, law-suits and vexations, frond on all sides, injury by false witnesses, lying youths, libels, and sometimes trouble by writing books.

Of the J, disputes with the lower orders and low women, family strife, danger of drowning, anxicty, affronts and ill-nsage, robbery, disgrace, and a propensity to luxury and debanchery.

The mid-henven to the $\sigma$ or 8 of $b$ causes disgrace, loss of oflice by some deceitful, mean, brutish people, chiefly the rulgar; it is said to canse all sorts of tronble, beggary, and ruin. To a king, breach of trenty; sedition, and tumults monge his subjects and treachery among his serrants.

Of 2, emmity of judges and all great men, which will cause many troubles, but will not eventnally injure the native materinlly. To a king, it denotes disputes with his nobility and people, which will end to their credit and his disgrace.

Of $\delta$, robbery, quarrels, imprisomment, and many evils, public accusation, or cleath. Tu kings, loss of armies, deposition, broils with their subjects, armies to keep them in awe, \&c.

Of the $\odot$, causes hatred and injury from great men, loss of trade, oflice, credit, substance, liberty, and life; it denotes bankruptey and ruin, banishment, \&e. To kinge, it denotes pride which will end in many afflictions.

Of 9, scandal and disgrace by women, menceessful courtslip, attended by scoru, delusion, and contempt. To kings, dismrace from ineontinence. It also denotes divorces, family broils, jealousy, loss of estntc, jewels, \&c. Marringes taking place when the mid-hearen is in opposition to Venus, are soon succeeded by separation, according to Lilly, who says that all such marriages are rash and quickly repented of.

Of $\not$, , great trouble, law-suits, literary disappointments, failure in all attempts at offiee or preferment, disgrace by false reports, libels, knavery, unjust witnesses and judges, anonymous letters, \&c.

Of the $D$, hatred of the vulgar, disputes about women, profligacy, fornication and waste of property, breaehes between the native and his mother, wife, or mistress, condemnation by a judge or some great man, the evil will be durable according to the radical strength of the promittor and of the Moon in that year's revolution.

The $\odot$ to the $\square$ or 8 of $\hbar$, it has much the same effect as the Conjunction, and it is foolishly affirmed, that this direction will kill the native's father if he have but a slight direction of death in his own nativity.

Of $h^{\prime}$, envy and hatred of lawyers and other enemies, causing expense and loss of estate and character, all of which will be recovered again if the geniture be not wholly unfortunate. To kings, it denotes disputcs mith the nobility and people through their own illegal ambition.

Of $\delta$, violent disease, blood-shot or inflamed eycs, blindness, wounds by fire, iron, liurts by machincry, robbery, and (if the Sun be hyleg) murder, ealenture, madness, \&c. It is an evil direction in a climacterical year or any other fatal direction or lunation.

Of $Y$, this ean only be the square, for none but such men as old Parr can live to feel the effeets of the Opposition. The Quartile is said to denote barrenness, disappointment in marriage, lust, debauchery, and their natural consequences, disgrace, infamy, and ruin.

Of $\bigvee$; the $\square$ of $\bigvee$ denotes infamy, false accusations, disgraceful conduet of the native or his eonnections, forgery, coining, swindling, loss of office and character, hatred, malice, robbery, and disappointment. As to the Opposition, it is a direction that never ean arrire.

Of the $D$, cvils from great men, loss in fortune and trade, also in trarelling; eauscs domestic quarrels, idleness, drunkenness, sickness, blindness, prostitution and debauchcry, small-pox, fever, measles, and worms.

The $D$ to the $\square$ or 8 of $\hbar$, causes hectic fevers, melancholy, nervous fear, loss by low clownish people or tenants, theft, \&c. Family disputes and waste, quarrels with the wife, loss in every undertaking, trade, merchandize, \&c. It often causes death and always diseases.

## THE EFFECTS OF DIRECTIUNS

Of 21 , difficulties, loss of office, disgrace, $\& \mathrm{c}$.; but the whole will be recovered, and his character restored. Injuries from religious men, magistrates, landlords, \&c.

Of $\delta$, madness, robbery, siphilis, stone or grasel, hatred and disgrace by women, death of a good wife or marriage to a had one, all kinds of sickness, bad cyes, death, shipwreck, and every evil, wounds, kicks of horses, burning, Sc.

Of the $\subset$, great danger and suflering, tumult and sedition, blindness, quarrels, injuries from superiors, fevers, tluxes, die. Lilly eays the Quartile of the Moon to the Sun is of little importance, and therefore all this must be unclerstuod as the eflects of the Opposition. To hings, it denotes loss of honour, cleposition, and death, and it is always the direction for a violent death. if it be so determined in the radir.

Of $\uparrow$, fornication, adultery, and prostitution, attended of course by ruin and infmoy, an unhappy marriage, vencreal dise thes, de. To chuldren, it denotes the small-pox or measle-; to women, exeessise menstrual discharges, \&c.

Uf s, asersion to learning and study, or, to those who apply themselves to cither, ill usage from the vulgar, dishonesty and all its cril consequences, banishment, sentence of death, delot, ruin, delirim, maduess, frauds by attornies, nud mhapy law-suits.

The above are said to be the effects of Directions, but the stutent mant be contented to judge of these efliects generally and not descend to particulars, as they are frequently varied hy other existing eircumstances.

Bexides the l'rimary directions, the modes of calculating which hase been given at large, there are others terined Sceondary, which are said to hasten or retard the eflects of primary directions. They are those daily configurations to the luminaries which occur after birth, being caleulated by a mere inspection of the Ephemeris, and allowing one year for every day, a month for every two hours, and so on in proprotion, eomputing from the moment of hirth to the time at which the aspect is completed. Most astrologers use there kind of directions, but I have not found them very eflicacions, and consequently shall conclude with this bricf explanation, leaving the student to adopt or reject
them at pleasure, or rather in aecordance with his own observations, for experience should be the sole test of all astrological facts.

The following are the Trigons of the Twelre Signs of the Zodiac, referred to in the above observations.

The Semiquartile and Sesquiquadrate have a similar effect to the Square and Opposition; and the Semiquintile and Biquintile are similar to the Scxtile, although weaker in power. The Zodiacal and Mundane Parallcls hare the same effect as the Conjunction.

The planet Herschell was unknown to the ancients, not * having been discovered until 1781. Its nature and influencc are thought to be similar to a combination of those of Saturn and Mercury, that is, in some degrec malifie. His evil effects arc always of a strange and extraordinary kind, and, as before stated, persons born under his influence arc romantic, unsettled, eccentric, and extraordinary eharactcrs, though magnanimous and noble-minded. Being only a small orb, and at an immense distancc from the earth, his cvil effects are ncither so powerful as those of Mars, nor of such long duration as those of Saturn.

The effects of the asteroids, if any, have not jct been discovercd.

The following is a table of the Essential Dignities and Debilities of the Planets, so frequently referred to in the foregoing pages, and in the remarks on the following nativities.


If has the same fortitudes and dcbilities as $\mathrm{I}_{2}$.

Thes table requires little explanation. Thas, the houses of Saturn are "? and $\approx$, which he is said to rule, govern, or to be lord of; this is the strougest of all dignities. The next is the cxaltation; thus Saturn is exalted in $\bumpeq$, and so on with the other planets. A planet in its own dignities is said to be strong, and consequently to have more power, and when debilitated, that is in its detriment or foll, it. is, on the contrary, weaker than when in any other eelestina sign.

## On the Measure of Time.

There are two measures of Time now in use among Astrologers, by one of which the Degrees and Minutes of an Are of Direction must be equated, in order to aseertain the time when the dhrection will operati. These are, that of Placidus de Titus and Valentine Naibod. Experience is the grand criterion in these matters, and $m y$ experience leads me to prefer that of Nabod. His measure of time was used by the eclebrated Raphacl, while Zadkiel and many other astrologers prefer the measure of Placidus. The method of the latter is to add the Sun's Right Aseension to the Are of Direction. The Sum will be the Right Asrension of the point in the Zodiae, which, when the Sun reachea, the Direction will be complete; and the Time must be equated by allowing a year for every day he takes in arriving to that point, and in proportion a month for every two hours.

Thus, in the Anthors Mativity, the Are of the Aecrndant to the Conj. of the Moon is
26. 29

To which auld the Sun's R. A.
113. 14
139. 43

This is the right aseension of Leo, 17. 15, where, by an inspection of the Ephemeris for the yrar of birth, the Sun will be found to have arrived in about 26 days and : $2 \frac{1}{2}$ hours after the time of birth, consequently the event denoted, namely marriage, might be expected to happen about the elst day of June, 183 s .

The Measure of Time (invented by Naibod) is aceording to the following Table, viz:- the mean daily motion of the Sun, denoting one year, \&c.

TABLE OF THE MEASURE OF TLME.

| Measure of Time for Degrees. |  |  |  | Measure of Time for Minutes. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Degs. | Yrs. Dys. | Degs. | Yrs. Dys. | Min. | Dys. Hrs. | Min. | Dys. Hrs. |
| 1 | 15 | 31 | 31166 | 1 | 64 | 31 | 19111 |
| 2 | 210 | 32 | 32171 | 2 | 12 8 | 32 | 19716 |
| 3 | 316 | 33 | 33177 | 3 | $18 \quad 13$ | 33 | 20320 |
| 4 | $4 \quad 21$ | 34 | 34181 | 4 | 2417 | 34 | 2090 |
| 5 | $5 \quad 26$ | 35 | $\begin{array}{lll}35 & 186\end{array}$ | 5 | 3021 | 35 | 2164 |
| 6 | 632 | 36 | $\begin{array}{ll}36 & 192\end{array}$ | 6 | 371 | 36 | 2229 |
| 7 | $7 \quad 37$ | 37 | $37 \quad 197$ | 7 | 436 | 37 | 22813 |
| 8 | 843 | 38 | 38202 | 8 | $49 \quad 10$ | 38 | 23417 |
| 9 | $9 \quad 48$ | 39 | 39208 | 9 | 5514 | 39 | 24021 |
| 10 | $10 \quad 53$ | 10 | 40213 | 10 | 6118 | 40 | 2472 |
| 11 | 1159 | 41 | 41218 | 11 | 6823 | 41 | 2536 |
| 12 | $12 \quad 64$ | 42 | 42224 | 12 | $74 \quad 3$ | 42 | 25910 |
| 13 | $13 \quad 69$ | 43 | 43229 | 13 | 807 | 43 | 26514 |
| 14 | $14 \quad 74$ | 44 | 44234 | 14 | 8611 | 44 | 27118 |
| 15 | $15 \quad 80$ | 45 | 45240 | 15 | 9216 | 45 | 27723 |
| 16 | $16 \quad 85$ | 46 | 46245 | 16 | $98 \quad 20$ | 46 | 28.13 |
| 17 | $17 \quad 90$ | 47 | $47 \quad 250$ | 17 | 1050 | 47 | 2907 |
| 18 | $18 \quad 96$ | 48 | 48256 | 18 | 111 | 48 | 29611 |
| 19 | 19101 | 49 | 49261 | 19 | 1179 | 49 | 30216 |
| 20 | $20 \quad 106$ | 50 | 50266 | 20 | 12313 | 50 | 30820 |
| 21 | 21112 | 51 | 51272 | 21 | 12917 | 51 | 3150 |
| 22 | 22117 | 52 | 52277 | 22 | 13521 | 52 | 3214 |
| 23 | $23 \quad 122$ | 53 | 53282 | 23 | 1421 | 53 | 3279 |
| 24 | 24128 | 54 | 54288 | 24 | 1486 | 54 | 33313 |
| 25 | 25133 | 55 | 55293 | 25 | 15410 | 55 | 33917 |
| 26 | 26138 | 56 | 56298 | 26 | $160 \quad 14$ | 56 | 34521 |
| 27 | $27 \quad 144$ | 57 | 57304 | 27 | 16618 | 57 | 3522 |
| 28 | 28149 | 58 | 58309 | 28 | 17223 | 58 | 3586 |
| 29 | 29154 | 59 | 59314 | 29 | 1793 | 59 | 36410 |
| 30 | -30 160 | 60 | 60320 | 30 | 1857 | 60 | 37014 |

```
ON THE MEASLRE OF TIME.
```

So that, by this measure, the Conjunetion wouhd operate almost at the same time as by that of Placidus. Marriage was predieted as the effect of this direction about seven years before the erent, which, having occurred within a few weeks of that period, is another striking proof of the serity of astrological calculations.

The enuse of death in Raphael's Nativity, was the Sun to the Zodineal Parallel of Saturn, Are 36. 26; this, equated by laibod's Measure of Time, operates at the age of 36 years and 50 weeks, or about the 6 th Mareh, $1 \times 32$. He died on the 2Gth February in that year, which is suffieiently near the truth to shem the correctuess of Naibod's Measure of 'Time.

I could adduce many other facts to the same purpose, but the above I deem sutlicient to establish the point; nevertheless, I would adrise the student to try both measures, and adopt that whieh his experiments shall induce him to think the most correct.

## OBSERVATIONS ON THE NATIVITY OF

 THE AUTHOR.The following remarks were made by a friend of the author's, to whom he referred for judgment, at a period when the partics knew nothing of each other, except from a written correspondence of some duration. The truth of this judgment, the phraseology of some passages alone having been slightly altercd, will afford a luminous proof of the verity of astral seience. It might savour of vanity for the author to disenss the merits of his own nativity, which is a sufficient reason for its appearing from the pen of another writer.

In this rectified seheme (see p. 132), $3^{\circ} 12^{\prime}$ of the eclestial sign Aries, arises on the cusp of the ascendant, Mars, lord thereof, is posited in his own mansion, Scorpio in the eighth housc, in opposition to the Moon from the first (who is in Taurus her exaltation), in trine aspect with Sol from the fifth, which has Cancer on its cusp, and in close zodiaeal sesquiquadrate with Mercury from the fourth house. Jupiter and Venus in the sign Gemini, in the third housc, are in opposition to Saturn from the ninth, who is principal ruler of the tenth and eleventh, and partly of the twelfth houses. Herschell in trine to the Sun and Mercury from Seorpio, and in opposition to Luna; the midheaven having Capricorn on its eusp.

The first Consideration is of Life and Health.
The significators in this respect arc very strangely posited. I find that Luna wants but $1 \frac{1}{2}$ degree of bcing in an hylegiacal place, so that had the native been born only six minutes later she would have had the office of
hyleg assigned to her ; but as that was not the ease, and as Sol is under the earth, the asecndant is the true lyyeg apheta, or giver of life; and as the aseendant is strong by being in trine to Sol and Saturn, and in sextile to Jupiter, and the lord thereof moderately well fortificd, I prediet that the native is fated to a long life. In his 3-th year the aseendant will be assisted by the benerolent rays of Sol and the lord of the asecndant. This year will prore a sickly one,* but death will not take place for many a year after that.

The Sun in good aspect to Mars, and Mereury in sestile to Luna, and she strong, denote the native will in general cujoy a moderate share of good health, although he will be subject to many accidents. The opposition of the Moon and Mars will eause pains in the legs, ferers, \&e. Mars being in Scorpio in the cighth house gives much danger by water, and the opposition of llerschell to Luma from Scorpio, by some poisonous or noxious liquid. Saturn in Sagittarius is a sign of falls from high places, and danger by fire and fire-arms, with many slight aceidents; yet although these positions of the planets cause sueh necidents, the native is fated to a natural death.

The form, Se. of the body are described by the aseendant, the lord thereof in Seorpio, and the planets aspeeting the same. Now Mars denotes a strong well-set body, but inclining to shormess; Scorpio, a middle stature; Aries, a tall stathre and spare body; fupiter also gives a tall stature, as does the Sum also. From these testimonies I am led to conelude that the mative is of a tall stature and slender, but well proportioned form.

The Minel and Dispasition are here gorerned by the sign on the ascendant, the Moon, and Mereury. . Tries, Taurus, and Cancer being possessed by those signifieators, render the mind active, sharp, ingenions, and ambitious; the trine aspeet of Mereury and IIersehell will mate the native a profound believer in the sidereal science, and gives a perpetual wish for the discovery of secrets in seience and art, while Saturn's parallel to Mercury will make him a patient inquirer into those seerets, and will cause him to leave no

[^6]means unturned to obtain the truth of whatever his active fancy leads him to investigate, and furnishes his mind with a love of things out of the track of custom. Mercury being in close zodiacal parallel to Jupiter, influences the native to the most exalted ideas of honour and rectitude, disposing him to magnanimity in the cause of morality and virtue. Mercury is configurated in the same manner to Venus, thereby endowing the mind with complaceney and softness, and rendering the sentiments delicate and welldisposed; it likewise gives a fondness for poetry, musie, the fine arts, beauty, 8 cc . with good taste and elcgance in every undertaking. It is true that the Moon is opposed to Mars, and he in evil configuration to Mereury, which will make the native too quick in temper, very passionate, rash, over ambitious, and prodigal, but the benerolent sextile aspeet of the "Silvered Luna to the Winged Mereury," is not only the sign of a noble and exalted mind, but is ever the configuration of native genius, which I feel confident the native possesses.

The Fortune in Life is the next consideration. The Moon is posited in Taurus, her exaltation, near the cusp of the second house, and Venus, lady of that house, is in the third, in conjunetion with Jupiter, which alone are signs of much riches, and denote gain, by short journeys, kindred, \&c. The sextile of the Moon to Mercury and Sol has signification of mueh prosperity, by writings, offices of public trust, litcrature, science, \&cc.; and the zodiacal parallel of Venus and Mereury, and the latter planet being in reception* with Jupiter confirm this opinion.
He would also be fortunate by dealing in eattle, mines, gaming, and in all kind of speculations; but as Sol is in the fifth, it is my opinion he would never be the better for them, as all gains thus produced would be spent in enjoyment almost immediately. The sesquiquadrate of Mars and Mercury will at times cause him to be unfortunate in his handwriting, in signing deeds, bonds, or some such things; he will often squander money for rain-glory, suffer loss by strangers, and not unfrequently be blamed for things which he is quite ignorant of, and will suffer loss to free himself from such accusations. Fire is also likely to be

[^7]detrimental to him; of coursc Mars opposing the house of riches will do all he can to give trials aud ditticulties, but as he rules the first, and is in the cighth in his own mansion, I judge that he portends legacies and mueh gain by the goods or effects of people deccased.

The Lady of the fourth in the first, near the cusp of the second, also denotes legacies, but on account of the opposition of Mars, I consider they will not be attained without much tronble and expense. With respect to the inclinations of the native in regard to trade or profession, Saturn ruling the tenth in the ninth gives a strong bias towards a seafaring life, and a love of gain by traffic to forcign lands.

He would make a good artist, and a most exeellent surgeon or chemist.

As to honours, I consider the nativity is exceedingly favourable, for the trine aspect of Sol (the natural signifieator of honour), and Merschell and Mars, the sextile of Jupiter to the ascenclant, the sextile of Mars to the Medinm Cahi, the Sun in close zodiacal parallel to Mars, Vemus, Mercury, Jupiter, and Saturn (which last is Lord of the tenth house), the sextile aspeet of the two hminaries and cardiual signs possessing the angles of the figure, are positions and configurations rarely to be met with, cansing honours and praise in an nneommon degree, although Saturn, in the ninth, will eertainly be the canse of lessening that honour which the native will deserve, more particularly among the partics signified by that honse. The conjunction of Vcuns and $J$ npiter in the sign Gemini, is a symbol of much eminenee among literary and scientific men, and will cause great honour from the fair sex. Vexation will often arise from ohscure persons, crities, \&e. yet in the end the native is trimphant.

To conchude this judgment I must again nffirm that it is a very propitious nativity; the native is born under fortunate stars, and indeed positive am I that le will experience full many of fortune's farours. Many of the evils which I hare maned, the native may donbtlessly avoid by using proper eare and circumspection.

## Of Travelling.

Mercury and Jupiter I find are the principal significators of travelling, and by their positions and configurations I predict that the native is fated to many percgrinations and much travelling, both by sca and land. In short journeys I see much gain, and that they will not only be completed without danger, but they will also be pleasant, healthy, and agreeablc. Mercury being the chief significator of short journeys, and bcing posited in the fourth house shews that thicy will be principally on or concerning scientific speculations, also dealings or bargains respecting lands, and they may also be on some business of his father's, but in long journcys, voyages, \&c. the native will sustain much injury; he will be in danger of being shipwrecked, of firearms, and of various other misfortuncs. The times in which he is destined to travel most are in his 22nd, 27 th, and 32 nd years.

## Of Murriage, \&.c.

In this judgment there are divers and manifold cons. derations to be duly observed.

The moon is opposed to Herschell, who is in the seventh house, which denotes muchinfelicity in the marriage state, arising from various causes; and the planct Tenus in opposition to Saturn has the same signification, yet the conjunction of Jupiter and Venus will certainly mitigate these evils.

The form and description of his bride I take to be denoted by Sol in Cancer (to whom the Moou first applies), and a commixture of Venus in Gemini, viz. one of middle stature and slender, with a fine symmetrical form, but, perhaps, may have a mark on the face; an honourable and well-disposed creature, full of gencrosity and humanity.
I. pcrceive that his wife's kindred are likely to cause many disturbances. She will certainly have property, but I do not consider that he will better himself by matrimony. If he marry in his 27 th, 28th, or 33rd ycar, he will do so under good direetions, and consequently will shun much
trouble; but if he marry in his 22nd, 25th, or 31st year, he will be unfortunate in the highest degree. I judge that his marriage will ecrtainly take plaee when the Moon arrives on the cusp of the ascendant, " viz. at the age of about 26 years and 11 months.

After the consideration of marriage follows that of elitdren, in which I shall weigh matters fairly, by redueing the particular quality of each signifieator from its position, \&e. into a table, and reducing from thenee the effects they respectively give. Upon the cusp of the ascendant is

| Aries, in itself | Indifferent |
| :--- | :--- |
| Mars, Lord of that sign in Scorpio | Fruitful |
| Cancer, on the fifth house | Ditto |
| Lnna, Lady of the fifth in Taurus | Indifferent |
| Capricorn, on the elerenth house | Ditto |
| Saturn, Lord thereof in Sagittarius | Ditto |
| Libra, on the seventh | Vitto |
| Venus, Lady of that sign in Gemini | l3arren |
| Sol, in the fifth house | Ditto |
| Luna, in the first house | Fruitful |
| Luna, in sextile with Mercury | Ditto |
| Luna, in sextile mith Sol | Barren |
| Luna, in opposition to Mars | Ditto |
| Venus, in eonjunction with Jupiter | Fruitful |
| Venus, in opposition with Saturn | Barren |

[ $\therefore$. B. This method cannot always be depended upon.Author.]

By these configurations it will be perceived that the testimonies for fruitfulness and barrenness are equal, yet I consider from the Moon's position in Taurus, in the first house, that it is very probable the mative may have one ehild: and as the signifieators are mostly in feninine signs, I conclude that will be a female. The partieular destiny of ehildren ean only be deduced from their own intlividual horoseopes.

## Friends and Enemies.

Saturn is the principal significator of friends and partly of enemies, and by his position in the ninth house (aided

[^8]by Mercury in sesquiquadrate to Mars), I am inclined to think that scientific men, and those connected with religion, will prove both his friends and enemies. This planet is opposed to Jupiter and Venus, showing thereby that people connected with the church shall mostly prove his enemics, particularly persons rather tall in stature, well composed bodies, and of sanguine complexion. He must also be extremely careful of the fair sex, indeed the native will very frequently prove an encmy to himself. Foreigners and pcrsons in high power will also prove his friends; but it will often happen that " those persons whom he thinks his friends, will in the end prove his greatest encmies," which is occasioned by the opposition of the Moon and Mars.
"Verbum sapientia satis."

## THE Nativity of RaphaEl,

The celelrated Author of "The Astrologer of the Nineteenth
Century," "The Mumual of Astrolony," s.c. S.c.


| $\stackrel{\dot{\Xi}}{\underline{E}}$ |  |  | II.A. | A. D. | S. D. A. | D.hT. | S.N.A. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10.583 | . 10 | 152. 31 | 15.42 |  |  | $\overline{74.18}$ |
|  | 1. 515 | 20 | 53. 97 | 23. 4 | 113. 4 | 18. 51 |  |
|  | (1). 16 S | -14S | 303. 17 | 27.34 | 62. 26 | 10. 24 |  |
|  | 1. 2 S | 0. 35 N | 25. 34 | 13.34 | 0:3. 3.4 | 17.16 |  |
| $\bigcirc$ |  | 0. 29 S | 3 S-8. 52 | 0.37 | 89. 23 | 14. 5.4 |  |
|  | 1.40N | 5. 32 S | 314. 19 | 20.26 | 69.34 | 11.36 |  |
|  | 3. 18 N | 3. 2 N | 3.77. 57 | 3. 49 | 93.49 | 15.38 |  |
|  | 2.30 S | 1. 245 | 339. 22 | 14.40 | 75. 20 | 12.33 |  |
|  | The | 's ${ }^{\text {n's }}$ | e of posit | tion is | 21.40 30.1 |  |  |

Not being aeqnainted with the times of any remarkable events in the life of Raphael, I shall confine mesself to a few remarks on his moral and intellectual charaeter, his elevation in life, the nature of his death, \&c.

No one weeps more sineerely over the tomb of departed genius than myself, no one is more deserving of our tears than the great metropolitan astrologer; his death by many was unexpected, but, alas ! death spares none, all fall alike beneath his stroke, and Raphael, in whose soul ever burned most pure the spark of genius and prophetic fire, has bowed to the decrees of fate.

In these remarks I shall prove that the death of Raphael has oecurred in confirmation of his own theory, in support of his own rules, and to the lasting credit of astrology. The foregoing scheme of his natirity is giveu iu the "Astrologer of the Nineteenth Century," page 43j. Ile had undoubtedly good reasons for gising that as the true time of birth, consequently I have made my caleulations upon it without the least alteration.

On inspecting the horoscope the student will observe that the celestial eonstellation Gemini aseends in the easteru horizon; Venus and Jupiter are conjoined near the mid-heaven, the Sun is in a mundane sextile to the ascendant, Mars in the same aspeet to the M. C., Mereury in zodiaeal sextile to Saturn, and all the planets, except Herschell, are abose the earth. Positions of this kind are thus described in the "Manual of Astrology," page 155.
"The Sun or the Moon in the mid-hearen, near the eusp, are sure to produee great sueeess in life, with a name known both far and near; or if Jupiter or Venus be eonjoined with these, they give an extensive fame, great honour, lasting eredit, power, aud emiuence. The native is sure to eelipse and outclo all his contemporaries, as mell as to be victorious in almost every controversy wherein he may be engaged.
is The sign Gemini alone is found to produce many persons of eminence, on aecount of the great number of fixed stars it possesses-all the planets abore the earth (or the greater part of all) indieates fame; and Jupiter or Tenus near the mid-heaven, is another testimony of glory or renown, and a name that must live after death, yet it gives numerous petty rivals, who, to use the simile of an old
author, like dogs baying at the moon, are generally as presumptuous as they are imbecile and worthless."

All who are in the least aequainted with the character of Raphael, will at once admit how exactly these rules apply to his circumstances in life, and acknomledge them to be most convincing proofs of the truth of Slementary Philosoply, which stauds upon a basis firm as that of nature. For the reader will believe the editor of the "Spirit of Partridge," and "The True Prophetic," who justly obserees, " that no other astrologer, since the days of Lilly, has been so successful as Raphach."

The nativity is diurnal, and the Sm, being in an aplietical place, is indisputably lyeleg or giver of life: nud Sathra, by mature lord of death, is certainly the amaretien orh. The direction which immedintely produced his death, wa: the Sun to the Zodiacal Parallel of Saturn, followed by' the Coujumetion of the same malefie planet, both in the Zopdiac ant in Mnuto; the Monn to the Zodiaenl and Mundane Conjunction of Mars, the Asecudant to the Semiquartile of Saturn, with other minor directions, which therether form a train impossible for mortality to withstand. Th true, the Sun was within fire degrees of the Trine of Jupiter, but this conld not preserve life, because Jupiter was directed to the sesquiquadrate of Mars near the same time, which entirely amihilated his benevolent power.

## The following is the calculation of the fatal are.

The Sun to the Zodiacal larallel of Saturn.
Right ascension of 5 lis. $2 \boldsymbol{2}$, where the Sum acquires the declination of Saturn
4.i. is

Ascensional difference of that point taken under the pole of the Sim
10. 23

Oblique aseension of the parallel
35. 35
O. A. of the Sun under his own pole, subtract 359 . ?

Are of dircetion
36. 26

Which converted into time by Naibod's measure, answers to 36 years, 11 months, and a few days, the age at which the native died.

Thus death, stern monareh of the tomb, the final terminator of mortal existence, folds us in his cold embrace,
and all the shadowy endearments of life vanish in a moment. Sueh is man, born to pass a few brief years in the land of mortality, his days are numbered, the clock of eternity strikes, the flame of vitality is quenched, and all, like Raphacl, bear ample testimony to the truth of the saying, "Mors omnibus communis."

In this instance, then, Astrology is again triumphant; let its opponents hide their ignorance, and learn the rudiments of the science before they presume to condemm. It is a science which has been studied by philosophers in all ages, and therefore we challenge the proudest and most coneeited of the human race to prove its futility by any arguments founded on rational principles.

The manners of Raphael were engaging, his soul was poetic, and his principles were in the highest degree philosophical and snblime. Many of his astrological works are useful, and "The Manual" is unparalleled for scientific beauty. His Theory of the planet Herschell is decidedly better than any other, and this planet he beliered would occasion the final destruction of the solar system. In one of his letters to me, speaking of the absurdity of neglecting this stupendous orb in astrological speculations, he says, "This star will one day hit time so tremendous a blow, that ruin and death will follow." As a specimen of his sublimity of thoughts, beauty of language, and cleganec of description, I can insert nothing more suitable than the parting address to his readers, published in "The Prophetic ,Mlessenger' for the sear 1832. Certainly it deserves not only to be engraven in letters of gold, but on the hearts of all men. His words are:-
"Courtcous Reader, I once more take up my pen to write thee a parting address; jear after year flies swiftly, even as on the wings of thought. It may be bricfly said, that life bears us on like the stream of a mighty river; our boat at first glides down the narrow channel through the playful murmurings of the little brook and the winds of its grassy borders, the trees shed their blossoms over our young heads, the flowers of the brink seem to offer themselves to our young hands, we are happy in hope and grasp eagerly at the bcauties around us, but the stream hurries us on and still our hands are empty. Our course in youth and manhood is along a wider, dceper flood, and amid objeets more striking and magnificent, we are animated by
the moving picture of cajoyment and industry which passes before us, we are excited by some short-lived success, or rendered miserable by some equally short-lived disappointment, but our energy and ollr despondence are both in vain. The stream bears us on, and our joys and our griefs alike are left behind us. We may be shipwrecked, but we cannot anchor; our royage may be hastened, but it cannot be delayed; whether rough or smooth the river hastens towards its home, till the roaring of the ocean is in our cars, and the tossing of its waves is bencath our keel, and the land lessens from our cyes, and the floods are lifted around us; till the earth loses sight of us, and we take our last leave of it and its inhabitants; until of our further royare there is no mitucss but the infinite and the Etcmal! laphael has no need, hind reuder, to pursue the metaphor any further, but, learing thee to thy reflections, he hids thee, courteons reader, for a brief period, his ammal farewell."

Ilis uame is curolled in the number of the immortals, and his memory is mutading as the stars of heaven ; may it ever be held in as high estimation as it is by th, weliwishor,

The: Muthor.


## tile nativity of Mrs. *

## For the Horoscope, see paye 63.

In this theme of heaven, Mercury in Capricorn on the cusp of the mid-henven is a very excellent position, making the mind active, ingenious, and persecering. Mercury in zodincal parallel with Venus, gives good taste, with a lore of poctry, music, and the fine arts. And the Sextile of the Moon and Mercury is acknowledged to betoken native geuius, and inclines the native to learning, judgment, and knowledge of evcry kind. The zodiacal quintile of Mercury and the benerolent Jupiter, causes honesty, good nature, and truc religion. Mercury's Sextile to the Moon and Herschell in Sextile with the Ascendant, gives the native a lore of antiquities, mystic learning, se.

The Sun, who is giver of life, being in mundane quartile to Jupiter, and in zodiacal parallel with Ilersehell, occasions disorders of the lunge, pains in the head, and some defec ${ }^{*}$ in the organs of respiration.

I shall now proceed to notice a few of the past directions nud speak of their effects for the benefit of the young student, but for the sake of conciscuess shall uotice only a few. The direction of the Moon to the conjunction of Saturn, at 14 years and 6 months, caused a lingering disease; and the Sun to the mundane quartile of Saturn had similar effects, althongh more lasting, being follomed by his zodincal parallel. Surgeous and fricuds, all thonght the vital flame would soon be extinguished, and that the native might contemplate a release from affliction only in death, but observe the cause of recorery. The mundane quartile of Saturn was formed on the cxact radical place of Jupiter, and the quintile of Venus with the Sun, moderated the maliguity of Saturn's parallel. Thus, from a scientific inrestigation of celestinl causes, the student mar alwars determine the issues of life and death.

The time of the native's marringe was at the age of $\Omega_{4}$ years and 9 monthis, the direction causing which was Venus to the mid-hearen. In her 29th year she had another very severc illness. The Ascendant was then directed to the opposition of Saturu and the Sun to the rapt parallel of Mars, but the mundane parallel of Venus preserved life, and the succeeding directions renewed the henlth of the native. Her 36th year was also tremendously evil. The Sun was then directed to the conjunction of

Saturn both in zodiae and mundo, aud the Moon to the opposition of Mars in mundo, but the breath of life was Yt preserved and the cause is still obvious. The Sum came to his own sextile in numdo, and to the quartile of Vems. I might proceed to shew the correspondence between the equated ares of direction and their effects in many other instances, but sufficient, I trust, has been said to conrince any rational inquirer after truti, however seeptieal he might be. I will merely remark, that the mundane parallel of the Sun and Mars again brought dicense in the ilst year of the native's age, and I fear the fatal lirections, which are to terminate all the joya and sorrows of this aniable female, will be the Sm to the zodiacal parallel of Mars and the quartile of Saturn; the Asemelant to the sesquiquadrate of Venus; the Sun to the quartile of Mercury in mumdo; the Moon to the quartile of Saturn in mumb; the Sim to the eonjunction of Mars in mumdo; the Noon to the mumdane parallel of Saturn; and, the Sun to the conjmetion of Mars in the zodiac.

These directions form a train which, in my opinion, mortality camot withstand: all of them are in operation within the short sinee of three ycurs, and on this account they become still more malevolent.

A munber of benerolent directions immediately suceed, bint alas, their assistance will undoubtedly come too late, and will only sere to shew the nature of the fatal disense, which will be disorders of the lunge or asthma, aceompamod with pains in the head, ending eventually in consmoption. 'Thia latter is denoted hy the aspeets of Saturn abul Jupitur to the amar tie place.

It woukd have been eavy for an astrologer, manequainted with the native, to judge that her health would be always delieate, for the student will have observed, that Jupiter is in zodiacal quartile to Venus, and Saturn forms the same configuration with Dlars. The aspect of Jupiter and Venus weaken their benign power, and the quartile between Saturn and Mars increases their natural malerolence.

Note.-The above prediclions have heen strikingly fulfilled. The native tied of consmontion in July, 1833, at the age of $\overline{3} 3$ years and r-half-the nuthor having calculated this nativity above one year previonsly. In fact, the present work whe nearly ready for the press in lhecmber, lishl, containing the preceding calculations without even a verbal alteration.
$69.4 ;$


| Plauets. | Lat. | Dec. | R. A. | A. D. |
| :---: | :---: | :---: | :---: | :---: |
| H | 0.35 N. | 8. 42 S | 202. 14 | 11.53 |
| b | 2. 19 N . | 7.15 S | 203. 20 | 9. 52 |
| 4 | 0.25 N . | 22. 7 S | . 252. 55 | 33. 11 |
| ठ | 0.48 S . | 23. 59 S | . 260.26 | 36. 48 |
| $\bigcirc$ |  | 20.51 S | . 241.19 | 30. 31 |
| 우 | 2.31 S. | 24.51 S | 289.14 | 38.35 |
| $\underline{\square}$ | 1. 49 S . | 24. 20 S | 252. 35 | 37.31 |
| D | 1. 37 N. | 19.25 S | 298. 5 | 28. 20 |

This is the nativity of a very interesting young lady, who, cren when a child, was remarkably beantiful; but at the enily age of three years and a-half her health began to decline. The ascendant was then directed to the quartiles of Mercury and Jupiter, and to the semiquartile of Saturn and llersehell. The quartile of Jupiter preserved life at this period, but keft behind a consunptive habit of body. Wheu nearly eleven years of age she had the searlet fever, aud the aseendant was directed to the quartile of Mars; as this aspeet was formed in the radical place of Jupiter, life was still preserved. In nativities similar to the present, death fregucntly takes place without any anaretic direction falling exactly at the time. This was the case in the present instatice. The amiable mative died at the age of twenty three sears and four months. Her bealth began gradnally to decline in her twenticth year. The Sun was then direeted to the comjunction of Mars and the rapt parallel of the Moon. "This true, that at the time of death the Dloon was directed by secondary motion to the bodies of Saturn and llersehell, and to the cpuartile of her radical place. These, although not primary directions, were suthicient to muse death in a mativity so radically weak as the presellt.

The positions of the Moon in Capricorn, and Mereury in ©agttarins, remder the mind ingenions and acute. The conjumetion of Meremry and Jupiter, the latter orb being an his own eclential mansion, is a position which always tames bebevolence and an ammale disposition; and the - low zodiacal parallel of Mereury and Vems endowed the nathe with a great lowe of poctry, musie, the fine arts, and hernut, with an caquisite taste and semsibility. 'The quartihe of Saturn and llerechell to the Monu gives melancholy ficlinge, romantic ideas, and a love of strauge nod extraordinary things.

The jersonal appearance cannot possibly be discovered from the configurations in the horoscope, these being so baried; Herschell, Sitnrn, Jupiter, Mereury, Venus, and the lloon, cach giving their testimonials. The two latter, however, principally formed the person. The native was of moddle stature, or rather tall, slender, possessing a teautifinl and symmetrical form, delicate and interestiag
features, fine bluc eycs, dark brown hair, and a complexion exquisitely fair.
" Full many a flower is born to blush unseen,
And waste its sweetness on the desert air."
Such was this amiable young lady, but the hand of death soon removed her from earth-and bore her

> "'To that bourn

From whence no traveller returns."

The following horoscopes are those of thuce children, the times of whose birth were carefully noted by a medical gentleman, an intimate friend of the author's, as early trials of his skill in the astral science; their authenticity may, therefore, be depended upon.
230.5


There are crident signs of a short life in this nativity. The Ascendant is giver of life, and is afflicted by the semi-
quartile of Mars from the second house, vitiated by the prescnce of Herschell and an approaching opposition of Saturn. The Sun, the light of time,* is affieted by the zodiaeal parallel of Mars, is applying to his opposition, and has but recently separated from Saturn. The Moon is in quartile to Venis and Saturn, who are conjoined in the seventh house, the Moon being nearly in semiquartile with Mars in the zodiae and mundo. Thus all the aphetieal points were ritiated, and when Mars formed his semiquartile to the aseendant, are 20 minutes, this child died, at the age of 4 months, viz, on the 27 th December, 1830, at which time, about 3 in mane, the Moon had only a few hours passed the quartile of the redieal Saturn, and Mars was on the cusp of the seventh, -thus opposing the honse of life in the radix.

Children who die under five or six years of age generally die by position not by direction; that is, if the mativity be weak and allieted, as in the present ease, an astrologer might rationally conclude that the ehide would die in its infaney, but would not frequently sueceed in predieting the precise time of death. For instance, there are certain tokens of a short life in the illustrative horoscope, page 18. Rapharl, the author of "The Astrologer of the Nincteenth Century," Sc. was of opinion that if this child survired his first year, he would attain the age of manhood. I thonght differently, and assured the child's parents that he would die before he was six years old. He was apparently healthy and strongr, but shortly before the end of his sixth year, intwithstanding the aid of one of the most skilful phesicians of the age, the child died. This death was caused by position, not by direction. The following is another instance of the same kind.

[^9]

The positions and configurations in the above horoscope are unusually malevolent. First the ascendant, which is apheta in this uativity also, is in caact opposition to Mars, and is further aflicted by the semiquartile of Mercury and Tcuus. The Moon has lately separated from the quartile of the Sun, and applies to a conjunction of Saturn, with whom she is in zodiacal parallel, while the Sun is in mundane quartile to Saturn.

This infant scarcely breathed before its death, it may be briefly said,-It was born only to sec the light and die.


There are crident signs of short life in this mativity. The ascoudant is again hyleg and aflieted by the presence of Saturn, who las only just passed its eusp. Mars casts his sesquiquadrate to that point, and the Moon is in the same esil aspect thereto. The Sun, light of time, is opposed by Jupiter, but is assisted by his zodineal parallel. The Sun is also in mundane quartile to Mars in the eighth house, while the moon is aftlicted by the zodiaen sesquiquadrate of Saturu and the mundane quartile of Mars. 'This child also died.

Having thus arrived at the conclusion of my work, and proved, I trust, to the satisfaction of every reader, that the heavenly bodies have a real and ascertained influenee over the affairs of men, I shall dismiss it with an extract from "The Institutes of Timour," the great Eastern Emperor,
and predict that the day will once more come, when the Kings of England will imitate his wise policy.-"Men learned in medicine and those skilled in the art of healing, and custrologers and geometricians, who are essential to the dignity of the empire, I drew around me."
N.B. Nativitics calculated by the Author, and Horary Qucstions resolved on any subject connected with Life, Death, Marriage, Travelling, the welfare of absent friends, \&cc. \&c., and Instructions given in the Occult Sciences.

Letters and Pareels addressed, "Ebn Shemaya, to be left at No. O, Charles Street, Sheffield, until called for," will be duly attended to. Alt unpaid letters and parcels will be refused.

> THE END.

## LRIIITA.




in. ., $A$, .. вге retul ire.
isi. .. lli, ., Than read Then.
54, .. 30, :. sill riced -14m.






[^0]:    " How dietant some of these noctmonal sums, Sodistant, says the sacre, 'twore not abmityl To doubt if heame sct ont at Natme's hirth Are yet arrised at this so foreign work, Thounh nothing half so ripidin their flicht, An eve of awe and wonder let me roll And roll for ever- h ho can satiate sight lin such a scene, in such an ocran wide. Of feep astonishument, where depth, height, breacleh, Are lost in theirextremes, and where to count The thick sown elories of this fichl of fire, Perhape a seraph's computation fails."

[^1]:    - See the article on this culject in the Familiar Astroleger.

[^2]:    －Some Astrologers calculate the Conjunction in the same mamner as every other aspect．

[^3]:    - The elements of every dircetion are phrpesely given in the table of uspects, that the young stadent inay calculate them by logarithms in the same manner as the first direction is done, which will be fomm a prottable and an agrecable exercier.

[^4]:    * The easiest method of finding where the moon meels the decliuation of any other planel, is by inspectinu ith eplomeris for the year.

[^5]:    - In a sign where he has no esential dienities.

[^6]:    * For the cause of this sec the table of directions.

[^7]:    * Disposed of by cach other that is in each other's dignities.

[^8]:    - This are of direction certainly did cause marriage.-Author.

[^9]:    - The Sun by day is ternacd the light of time, and the Moon by night.

